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Abstract

The presence of error correction mechanisms involved in translation has been ascertained but

their elucidation requires a mathematical framework which is still missing. Comma-free codes are

synchronizable error correcting codes that were introduced by Sir Francis Crick in 1957 to tackle

the difficult problem of frame retrieval during translation. Despite its appeal the proposal was

discarded but in 1996, thanks to a large scale exploratory analysis of coding sequences, a weaker

form of comma-free codes, called circular codes, were hypothesized to be involved in the translation

machinery. Recent works established a connection between circular codes and group theory and

identified a set of 216 circular codes possessing desirable mathematical properties. These, in turn,

can be partitioned into 27 equivalence classes according to the 8 nucleotide transformations linked

to the dihedral group of symmetry. The coverage of a circular code is a measure of its compliance

with a specific sequence or organism. It has universal properties, is strongly correlated with

translation accuracy and behaves differently in the initial and final parts of the sequences. This

agrees with the molecular biology of the translation process and raises interesting questions. This

thesis moves from these results and studies both the codon usage and the code coverage in 24

different organisms. The analyses are carried out in the R environment and part of the work has

been devoted to collaborating at the development of the R package mathDNA, which implements

some of the functions used in the analysis. The results confirm the different behavior in terms of

code coverage and codon usage at the beginning and at the end of the sequences and proves that

there is a universal and complex relationship between the coverage of two sets of codes linked by

Keto-Amino transformation. The existence of a correlation between the length of a sequence and

the code coverage is also found.
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1 Introduction

This introductory chapter is divided into three sections. In the first part, the biological process of

translation and the genetic code are introduced together with some of its fundamental properties.

In the second part, the theory of circular codes and how it is linked to biochemical transformations

through particular symmetries are explained. In the third and last part, the results suggesting

that circular codes could be the key to explain some still unknown biological mechanisms will be

presented, with a focus on the main results that provided the basis for this work.

1.1 Biochemical background

1.1.1 The translation process

Protein synthesis is a fundamental biological process that takes place within cells, useful for bal-

ancing the loss of cellular proteins (through degradation or export) through the production of new

ones. This process can be broadly divided into two stages: transcription and translation.

During transcription, a section of DNA encoding a protein, known as a gene, is converted into a

molecule called messenger RNA (mRNA), using one strand of the DNA double helix as a template

to copy the information it contains. Once the mRNA is ready, it exits the nucleus to reach the

cytoplasm, where it interacts with the ribosome, which which acts as a protein assembler in the

process.

During translation, the mRNA is read by ribosomes, which use the nucleotide sequence of the

mRNA to determine the amino acid sequence. Once the mRNA binds to the ribosome, another

RNA molecule, known as transfer RNA (tRNA), approaches it. This adapter molecule is loaded

with an amino acid and three nucleotides that are complementary to those in the sequence of the

mRNA molecule. Once the entire mRNA sequence is occupied by tRNA molecules, the corre-

sponding amino acids are linked together and assembled into a protein. The ribosome attaches to

the mRNA at the start codon (ATG), where it begins to translate the molecule. The nucleotide

sequence of the mRNA is read in triplets: three adjacent nucleotides in the mRNA molecule corre-

spond to a single codon. The ribosome attaches to the mRNA at the start codon (ATG), where it

1



1.1 Biochemical background 1 INTRODUCTION

begins to translate the molecule. The nucleotide sequence of the mRNA is read in triplets: three

adjacent nucleotides in the mRNA molecule correspond to a single codon. The tRNA then binds

one anticodon (the sequence of three nucleotides complementary to the codon on the mRNA that

corresponds to an amino acid) after another to assemble the protein chain.

This process is illustrated in Figure 11.

Figure 1: The translation process (from NIH, National Human Genome Research Institute).

1.1.2 The genetic code

In 1953 Watson and Crick revealed the structure of the deoxyribonucleic acid molecule, showing

that it is composed of two very long chains coiled into a double helix (Watson & Crick 1953).

Phosphate and sugar groups alternate regularly on each chain. Each sugar is linked to one of the

four possible nitrogenous bases, namely Adenine (A), Cytosine (C),Thymine (T) and Guanine (G).

The two DNA strands are linked together by hydrogen bonds between the nitrogenous bases. The

bases are joined in pairs, and only two combinations are allowed: Adenine binds with Thymine
1https://www.genome.gov/genetics-glossary/Translation
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1.1 Biochemical background 1 INTRODUCTION

and Guanine with Cytosine. This property, called complementarity, allows the sequence to be

replicated from a single strand and is the basis of the replication mechanism.

After this discovery, efforts were made for many years to understand the rules linking the world of

nucleotides with that of amino acids and proteins. The physicist Gamow was the first to postulate

that groups of 3 bases are used to encode the 20 standard amino acids used by living cells to

build proteins, which would allow a maximum of 43 = 64 amino acids (Gamow 1954). Later,

in 1961, an experiment was carried out which showed that a synthetic RNA made up of Uracyl

bases (the RNA equivalent of Thymine) coded for a protein composed entirely of the amino acid

phenylalanine (Nirenberg & Matthaei 1961). They thereby deduced that the UUU codon (TTT in

DNA) encoded for the amino acid phenylalanine. This was a turning point in biochemical research,

which stimulated researchers to discover the translation table of the genetic code. In fact, it was

later discovered with similar methodologies that the codon AAA specified the amino acid lysine,

and the codon CCC specified the amino acid proline. In 1965, therefore, the code was completely

deciphered and a table like the one shown in Figure 22 was identified.

Figure 2: Translation table of the genetic code.

2http://biology-pictures.blogspot.com/2013/10/table-of-genetic-code.html
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1.1 Biochemical background 1 INTRODUCTION

We can, therefore, describe some basic properties of the genetic code:

• it is a triplet code: each amino acid is encoded by a triplet of nucleotides (codons);

• it is degenerate: each amino acid can be encoded by more than one codon;

• it is not-overlapping: each nucleotide in the sequences is part of one and only one codon;

• it is universal: it is the same in almost all organisms, from bacteria to viruses to humans.

With a few exceptions, such as mitochondrial DNA, it is the universal language of life.

Further important concepts related to the genetic code that are worth mentioning are:

• start and stop codons, i.e. those particular codons that signal the start and end of the sequence

to be encoded during the translation process. The most common start codon is AUG (ATG),

which is read as methionine or, in bacteria, as formylmethionine. The stop codons, on the

other hand, are UAG, UGA and UAA and they mark the end of the translation because

there are no complementary anticodons to these stop signals, so they allow a release factor

(which actually releases the protein) to attach to the ribosome.

• the codon bias, which is the phenomenon where synonymous codons (i.e. those coding for

the same amino acid) are not used uniformly, but there is a preference in the use of certain

codons over others. This particular phenomenon, which is due to the degeneracy of the

genetic code, has been and is still being studied in order to identify a theoretical context

that regulates the translation mechanism.

Finally, it is useful to present the notion of reading frame, i.e. the way of dividing nucleotide

sequences into a group of consecutive, non-overlapping codons. Each sequence, in fact, can be

read in three different ways depending on whether you choose to start at the first, second or third

position. Consider, for example, the sequence {AAATGAACG}. If read from the first position,

it contains the codons AAA, TGA, and ACG; if read from the second position, it contains the

codons AAT and GAA; if read from the third position, it contains the codons ATG and AAC.

It is therefore crucial that the translation is done considering the correct reading frame, as errors

(called frame shifts) can lead to the creation of a completely wrong protein.

Circular Codes, Reading Frames And Error Correction In Translation 4
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1.2 Circular codes, symmetries and transformations

1.2.1 Comma free codes and circular codes

To ensure that protein synthesis is efficient and error-free, two conditions are necessary: that

the points where translation begins and ends are correctly recognised and that the ribosome is

synchronised in the correct reading frame. The ability to avoid reading errors due to frame shift is

called reading frame maintenance and is essential because an error in frame synchronisation could

lead to the creation of a completely incorrect protein.

While the mechanism for recognising the start and end points of the translation is clear, the

dynamics of reading frame maintenance are still quite unknown. The first answer was given in

Crick et al. (1957) and was based on comma free codes. A comma-free code is a special set of

codons that allows the correct reading frame to be retrieved at any point in the sequence, provided

it is composed of codons that are all part of a comma-free code. Figure 3 shows an example (from

Giannerini et al. (2021)), which which clarifies the comprehension.

Figure 3: Comma free codes - example (reproduced from Giannerini et al., 2021).

Thus, in a sequence composed of codons that are part of a comma free code, a shift in the reading

frame immediately leads to a codon that is not part of the code. Despite this desirable property,

it has been proven that comma free codes are not adequate to explain the mechanism of reading

frame maintenance (Nirenberg & Matthaei 1961). This is due to the fact that, for theoretical

Circular Codes, Reading Frames And Error Correction In Translation 5



1.2 Circular codes, symmetries and transformations 1 INTRODUCTION

reasons, some codons could not be part of any comma free code, but since all 64 codons are used

in protein synthesis, none should be disregarded.

Forty years after Crick’s theory of comma free codes, Arquès & Michel (1996) found a less stringent

version of comma free codes that allows the correct reading frame to be retrieved: circular codes.

Again, they can be explained through a simple example in Figure 4, from Giannerini et al. (2021).

Figure 4: Circular codes - example (reproduced from Giannerini et al., 2021).

Therefore, the difference between comma free and circular codes is quite clear: in the former a

frame shift immediately leads to a codon that is not part of the code, while in the latter it is

possible to find valid codons even when the sequence is read out of frame.

The codes presented in Arquès & Michel (1996) satisfy three main properties:

• they are maximal: they are made up of the maximum number of codons they can contain

(i.e. 20, by construction);

• they are self complementary: if a codon belongs to a code, then also its reverse complement

belongs to the code;

Circular Codes, Reading Frames And Error Correction In Translation 6
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• they are 𝐶3: the circular permutations (Figure 5) of the codons of a circular code also form

a maximal circular code.

Figure 5: Circular permutation - example.

There are exactly 216 codes that satisfy these three fundamental properties, provided in Michel

et al. (2008). It has been shown, in Fimmel et al. (2015), that these 216 codes have special

symmetries linked to nucleotide transformations, i.e. those rules that map the set of 4 nucleotides

onto one of its 24 possible permutations. Among these, there are 8 special transformations that are

related to the dihedral symmetry group, i.e. they represent the 8 symmetries of a square (in Figure

6). The first four transformations in Figure 6 constitute a particular symmetry group (called Klein

V group) that contains the identity and three chemical transformations of nucleotides (Gonzalez

et al. 2008).

Figure 6: Transformations of the nucleotides forming the dihedral group (reproduced from Giannerini et al., 2021).

It has been shown that through these 8 transformations it is possible to split the 216 circular

codes into 27 equivalence classes, each containing 8 circular codes linked by the transformations

in Figure 6 (Fimmel et al. 2015).

Circular Codes, Reading Frames And Error Correction In Translation 7



1.2 Circular codes, symmetries and transformations 1 INTRODUCTION

Table 1 shows the 216 circular codes grouped in the 27 equivalence classes (each number corre-

sponds to the index of one of the 216 codes). In Table 2, on the other hand, it is possible to

observe the codons that are part of eight circular codes in one of the 27 equivalence classes (the

first row in Table 1).

Among the 27 equivalence classes, there are 16 for which the identity (I, first column in Table 1)

and Keto-Amino transformation (KM, last column in Table 1) codes have no codons in common.

These 16 classes are highlighted in bold in Table 1. We can see, in fact, that the codons in the

first and last columns of Table 2 (that refers to the first equivalence class) are all distinct.

Lastly, it is useful to note that during the analysis, reference will often be made to a so-called

remainder code. By remainder code, it is meant that group of codons composed by the total 64

minus the ones that compose the best and the worst codes within the single classes of equivalence

(we will have, therefore, 27 remainder codes). The size of this group will be, therefore, equal to 24

codons for the 16 equivalence classes in which best code and worst code are disjoint (64−20−20 =
24), while it will be greater in the remaining 11 equivalence classes.

Circular Codes, Reading Frames And Error Correction In Translation 8
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Table 1: The 216 circular codes grouped in 27 equivalence classes according to the 8 transformations of the dihedral
symmetry group. The rows in bold refers to the 16 classes for which the codes corresponding to the identity (I, first
column) and to the Keto-Amino transformation (KM, last column) have no common codons.

I AU CG SW YR ACUG AGUC KM

173 176 203 206 183 193 182 192
23 33 77 81 13 65 37 87
98 10 96 8 52 55 45 53
25 35 76 85 50 59 47 56
20 34 75 80 17 69 40 89

166 216 164 213 186 189 187 191
4 104 6 102 16 61 42 86

30 27 84 72 12 64 38 88
117 160 118 157 130 133 131 135
111 159 116 151 119 138 126 145

22 29 71 79 2 100 1 99
172 175 202 205 181 196 184 195
21 31 74 78 11 68 39 91
24 32 73 83 49 60 48 57
97 9 95 7 51 58 46 54

171 174 201 204 167 200 178 208
3 103 5 101 15 62 43 90

165 215 163 212 185 190 188 194
26 28 70 82 36 92 14 66
123 124 141 143 105 150 106 147

115 158 113 155 129 134 132 136
161 214 162 211 168 197 179 207
122 125 140 142 110 152 108 149
41 94 18 67 19 63 44 93
107 156 112 148 120 139 127 146

198 170 209 180 169 199 177 210
137 121 144 128 114 153 109 154

Circular Codes, Reading Frames And Error Correction In Translation 9



1.2 Circular codes, symmetries and transformations 1 INTRODUCTION

Table 2: Equivalence class formed by eight circular codes. Each column contains codons in 8 of the 216 circular
codons, related to each other by transformations of the dihedral group.

I AU CG SW YR ACUG AGUC KM

173 176 203 206 183 193 182 192

AAC AAC AAG AAG AAT ACA AAT ACA
GTT GTT CTT CTT ATT TGT ATT TGT
AAT ATC AAT ATG ACA ACT ACA ACT
ATT GAT ATT CAT TGT AGT TGT AGT
ATC CAC ATG CAA ACC AGA ACC AGA

GAT GTG CAT TTG GGT TCT GGT TCT
CAC CAG CAA CAC ACG CCA ACG CCA
GTG CTG TTG GTG CGT TGG CGT TGG
CAG CTC CAC CAG ACT CGA ACT CCG
CTG GAG GTG CTG AGT TCG AGT CGG

CTC GAA CAG CCG AGA GCA AGA CGA
GAG TTC CTG CGG TCT TGC TCT TCG
GAA GAC CCG CTA AGC GCC AGC GCA
TTC GTC CGG TAG GCT GGC GCT TGC
GAC GCC CTA CTC AGG GGA AGG GGA

GTC GGC TAG GAG CCT TCC CCT TCC
GCC GTA CTC GAC GCC TAA CCG TAA
GGC TAC GAG GTC GGC TTA CGG TTA
GTA TAA GAC TAA TCA TCA TCA TCA
TAC TTA GTC TTA TGA TGA TGA TGA

1.2.2 Codon usage and code coverage

Codon usage and code coverage are two quantities that will play a key role in the analysis

presented. The term codon usage simply refers to the frequency of occurrence of each of the 64

codons in one (or more) DNA sequence. For example, in the sequence composed by the group of

codons {ATG, AGC, GTT, ACA, ATG, GTT, ATG, GTT}, the codon usage for ATG and GTT

would be 3/8 = 0.375, for ACG and ACA would be 1/8 = 0.125 and for the remaining 60 codons

would be zero.

Instead, by code coverage over one sequence or organisms, we mean the sum of codon usage that

are part of a code. This particular quantity can be considered as a measure of the goodness of

a code, as it measures how much a code is present in a sequence or organism, thus how much

Circular Codes, Reading Frames And Error Correction In Translation 10



1.3 Motivation of the study 1 INTRODUCTION

it contributes to its translation (Gonzalez et al. 2009). Obviously, in our case, we will analyse

and discuss the coverage of circular codes. Figure 7 shows a simple example of code coverage

calculation, extracted from Giannerini et al. (2021), where a rigorous mathematical definition of

this quantity is also given.

Figure 7: Codon usage and code coverage - example (reproduced from Giannerini et al., 2021).

From now on, in order to simplify the analytical formulae, the following notation will be used: 𝑐𝑢𝑖

indicates the codon usage of the generic codon i; 𝐶𝑗 indicates the code coverage of the generic

code j.

1.3 Motivation of the study

In Giannerini et al. (2021), a study was conducted on the entire Codon Usage Database, i.e. on all

organisms for which codon usage values are available, which discovered several universal results on

circular codes coverage. It has been observed that, although the values for coverage are obviously

more or less variable depending on the taxonomy of the organisms under consideration, there

are universal recurring properties related to the symmetries of the circular codes. In particular,

considering the 8 codes present in each of the 27 equivalence classes sorted according to code

coverage in the different organisms, it is possible to observe a recurrent order (which follows the

order of the columns in Table 1). This property applies to all 27 equivalence classes. Even more

surprisingly, it was also proved that the code with the lowest coverage within each class (the worst

one) corresponds to the chemical Keto-Amino transformation of the code with the highest coverage

(the best).

Figure 8 (extracted from Giannerini et al. (2021)) shows some of the results obtained by considering

Circular Codes, Reading Frames And Error Correction In Translation 11
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the codes in Table 2 to get an idea of the universal properties mentioned. The Figure presents

the coverage (top panel), absolute ranks (middle panel) and relative ranks (bottom panel) for the

equivalence class of the 8 circular codes. The universality of the results becomes clear when ranks

within classes are considered. For example, although the coverage of the code 173 (46.4%) is not

the highest among the 216 codes (it is the second), it is the highest within its class. This universal

behaviour applies to the whole set of 216 codes divided into 27 equivalence classes.

Figure 8: Circular code coverage - universal properties (reproduced from Giannerini et al., 2021).

These results, therefore, suggest the existence of a universal order structure and that this can

be linked to the theory of circular codes, with particular attention to the Keto-Amino chemical

transformation. The aim of this study, therefore, will be to understand more about this scheme,

focusing in particular on the dualism between the identity code (which will henceforth be referred

to as the best code) and the transformed KM code (which will be referred to as the worst code).

For this reason, the first and last columns of Tables 1 and 2, which refer to the best and worst

codes, are coloured in blue and red. Furthermore, the order of the classes in Table 1 by row is

not random. The equivalence classes, in fact, are ordered according to how strong the properties

discussed within the eight codes in each class are.

Another interesting result pointed out in Giannerini et al. (2021) is related to the beginning and

end of the sequences. It was observed, in fact, that a particular behaviour for the coverage of the

Circular Codes, Reading Frames And Error Correction In Translation 12
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best (173) and worst (192) codes in the first and last about 30 codons of the DNA sequences. In

particular, it was observed that in these areas the coverage for the best code tends to be lower

than the average over the whole sequence. For the worst code, on the other hand, an opposite

pattern is observed. These considerations are also common to all organisms under investigation.

In Figure 9 (Giannerini et al. 2021) this behaviour can be observed on the results for code coverage

calculated by rolling windows on E.coli.

Figure 9: Coverage of the best code (173, in blue) and of the worst code (192, in red) at the beginning and at the
end of the sequences in E.coli (reproduced from Giannerini et al., 2021).

A further aim of this analysis, therefore, will also be to investigate this effect at the beginning

and end of the sequence by considering different approaches to calculating code coverage and the

different codes in the 27 equivalence classes.

Circular Codes, Reading Frames And Error Correction In Translation 13
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With the introduction of these new concepts, it is useful to update the previous notation:

1.3.1 Bootstrap test

It was observed that the code with the highest coverage is (almost) unique and that the code

with the worst result corresponds to the KM transformation applied to the best code. However,

it is reasonable to expect that the more recurrent a set of codons is, the less recurrent are the

codons that do not belong to that set. It makes sense, then, to investigate whether the particular

relationship linking best and worst codes is simply due to chance.

To answer this question, a statistical test was defined and applied in Giannerini et al. (2021). This

bootstrap test led to proof that the inverse relationship linking the code coverage of the code pairs

173-192 and 23-87 (in the first and second rows of Table 1) is not due to chance with a p-value

smaller or to 0.0001.

The aim of this test is to understand whether the difference between the code coverage of the best

and worst codes is compatible with that which would be produced by a random choice of codons.

Taking, for example, the best and worst sets in general, i.e. the pair 173-192, it was tested whether

coverage of code 192 is significantly lower than coverage of a random group of 20 codons taken

from those not belonging to code 173 (which will be 44, i.e. 64 total minus the 20 from 173). The

null hypothesis, therefore, is that the coverage of the worst group is compatible with the coverage

obtained by considering a random group of 20 codons. The alternative hypothesis, instead, is that

the results are not compatible and that, therefore, the relation between the best and the worst

codes is not due to chance.

Circular Codes, Reading Frames And Error Correction In Translation 14
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⎧{
⎨{⎩

𝐻0 ∶ 𝐶𝑤 compatible with 𝐶𝑅𝐴𝑁 ⟹ relationship due to chance

𝐻1 ∶ 𝐶𝑤 not compatible with 𝐶𝑅𝐴𝑁 ⟹ relationship not due to chance

where 𝐶𝑤 is the coverage of the worst code and 𝐶𝑅𝐴𝑁 is the random variable representing the

coverage of a random set of 20 codons taken from the subset of 44 codons complementary to the

ones in the best code.

To perform the test, the results of the code coverage calculated on the whole genome are considered

and 10,000 sets of 20 random codons are generated, on which the coverage on the genome under

consideration is calculated. The set of resampled codons was made homogeneous with respect to

CG content by imposing that their CG content be equal to that of the worst code considered.

In addition, resampling of the random sets of codons was carried out under two different as-

sumptions: extracting the 20 codons according to a uniform distribution over the 44 codons com-

plementary to the best code or respecting the distribution of these codons in the genome under

consideration. The first hypothesis therefore assumes that all 216 codons have the same proba-

bility of occurrence and exist independently of the codon usage of each genome. The second, on

the other hand, assumes that the occurrence of circular codes is linked to the codon usage of the

genome under consideration.

The test, performed on 291 genomes, rejected with a 𝑝-value < 0.0001 the null hypothesis that the

negative relationship linking codes 173-192 and 23-87 is due to random fluctuations, considering

both hypotheses that the occurrence of the codes is uniform or linked to the code coverage of the

genome.

During this study, therefore, this same test will be applied to verify that the results on the rela-

tionships between the coverages obtained are not due to chance.

1.3.2 Overview of further results of interest

Since the discovery of a common circular code in the genomes of eukaryotes and prokaryotes in

1996 (Arquès & Michel 1996), the theory of circular codes has aroused great interest and under-

went a rapid development. Several academics from different fields, from statistics to mathematics
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to bionformatics, have in fact studied this theory in search of connections with the process of

translation. Initially, the code identified by Arquès and Michel was only one, the so-called set X.

This set X contains the following 20 trinucleotides:

X = {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC,

GGT, GTA, GTC, GTT, TAC, TTC}

This set X is associated with two other sets 𝑋1 and 𝑋2 of 20 nucleotides. These sets result from

frame shifting on the set X of one and two positions respectively. Furthermore, it has been shown

that these three codons are linked by circular permutations.

In 2011, the coverage of the entire class of 216 codes with respect to a large set of coding sequences

was studied using a statistical approach (Gonzalez et al. 2011). The results of this study suggested

that, on average, the code proposed by Arquès and Michel had the best coverage capacity and

identified the existence of a sort of optimisation mechanism that relates the function of circular

codes to the synchronisation of reading frames. In 2015, again using a statistical approach, the

presence of the circular code X in prokaryotes and eukaryotes was studied in greater depth, and

it was also identified in the genes of bacteria, plasmids and viruses (Michel 2015). The study also

identified several variants of code X associated with different types of organisms.

Recently, the maximality property of the three circular codes X, 𝑋1 and 𝑋2 (all made up of 20

codons) has been statistically verified (Michel 2020). In another study, a necessary condition for

the self-complementarity of an arbitrary code is demonstrated in terms of graph theory (Fimmel

et al. 2018). In this paper it is also shown that circular codes allow the (correct) reading frame to

be recovered in any arbitrary trinucleotide sequence after a maximum of 15 nucleotides, i.e. after

5 consecutive codons.

As regards the identification of the symmetries linking the circular codes, following some primordial

hypothesis (Koch & Lehman 1997, Lacan & Michel 2001), in 2015 the particular transformations

that allow the identification of the 8 equivalence classes described above were identified (Fimmel

et al. 2015).

In addition, some research suggests that there is a relationship between circular codes and the

origin of the genetic code, which is still an enigmatic topic. Recently, a study concerning the

mathematical properties of the code X and its presence in the main actors involved in translation
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suggested that it is an ancestor of the standard genetic code that was used to encode amino acids

and simultaneously to identify and maintain the reading frame (Dila et al. 2019).

Moreover, in recent years efforts have been made to extend and generalise the theory of circular

codes. In Fayazi et al. (2021), in fact, codes have been studied not only in the triletter case over

the genetic alphabet with four letters, but generalizing to l-letter codes over larger alphabets. This

study was motivated by some previous findings that suggested that nature may encode not only

one set of information in DNA but 8 or even 24 sets at the same time (Demongeot & Seligmann

2020, Michel & Seligmann 2014, Seligmann 2016).

Finally, in Fimmel et al. (2020) the definition of circular codes was extended and so-called k-circular

codes were introduced. A code C is said to be k-circular if any concatenation of at most k words

from C, when read on a circle, admits exactly one partition into words from C. When a code is

k-circular for each integer k, then it is circular. The results of this study suggest that this type

of code may represent an important evolutionary step between the circular codes and the genetic

code.
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2 Data and algorithms description

This section discusses the data under analysis and describes as clearly and discursively as possible

the operations that were carried out to obtain the results presented in the next section.

More detailed information on the processes can be deduced by directly reading the R code used

to obtain the results, which can be found in Appendix C. In particular, in this chapter, objects

created during the analysis will be described and the name of the corresponding R object in the

code will be shown (in italics) to facilitate a complete understanding. In addition, together with

the explanation of each process, a small (numeric) preview of the results obtained will be provided

to give an example of how the objects created appear, since in the chapter describing the results

priority will be given to graphic representations.

2.1 Data: 24 different organisms

The data evaluated in this research are 24 genomes of 24 different organisms, listed in the first

column of Table 3.

Each genome is stored in an RData file and, once loaded into R, it is a list of sequences. Each

sequence is a vector of single characters made up of different combination of the 4 nitrogenous basis

(A, T, G, C). Each genome is composed by a different number of sequences (that are displayed

in the third column of Table 3) and each sequence can consist of a different number of bases and

encodes for a protein. Each sequence is coding, i.e. without introns (the non-coding regions of the

genes), and complete, i.e. including the start and the stop codons.

The data come from GenBank (NCBI Resource Coordinators 2016), the NIH (National Institutes

of Health) genetic sequence database that contains a collection of all publicly available DNA

sequences, and were extracted using the R package seqinr (Charif & Lobry 2007).

Table 3 offers an overview of lengths and sizes of the genomes that will be analyzed. In the second

and third columns, in fact, are respectively displayed the total number of basis composing all the

sequences in the genomes and the number of sequences available for each genome.
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Often during the analysis the single characters in the sequences (nitrogenous basis) are merged

in groups of three sequential units, in order to obtain vectors of codons (three nitrogenous basis).

Furthermore, since we have genomes of variable sizes, data have been frequently split into groups

of genomes of similar sizes (in terms of number of basis) in order to make computations optimized

and less time-consuming.

For every approach discussed in this section, will be also provided a small part of the created

objects in order to make explanations clearer, while in the Results part of the dissertation the

obtained results will be displayed and evaluated through graphical and more comprehensive tools.

However, since we are dealing with huge datasets and, consequently, large results, information on

six recurrent genomes that have been chosen as representatives of all the others will be presented

and discussed. This choice is linked to the need for representativeness of the different sizes of

genomes. Furthermore, model genomes, i.e. organisms for which similar types of analysis have

been performed, were preferred over others in order to allow reproducibility and comparison with

other studies. These six genomes of interest are colored in red in Table 3.
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Table 3: Size of genomes considered in the study, model genomes in red.

Genome Total number of bases Total number of sequences

AeropyrumPernix 686,592 713
Thermoplasma.acidophilum 1,137,609 1,150
P.Horikoshii 1,377,468 1,583
Pyrococcus 1,388,490 1,441
Staphylococcus.aureus 1,946,109 1,977

Helicobacter.pylori 2,545,650 2,392
Methanosarcina 3,119,499 2,963
Archaeoglobus 3,541,029 3,757
Escherichia.coli 4,040,190 3,983
Streptomyces.coelicolorA3 5,485,755 5,202

M.Xanthus 6,130,989 5,037
Caenorhabditis.elegans 6,331,206 3,347
Sulfolobus.solfataricus 8,907,675 9,674
Schizosaccharomyces.Pombe 11,363,931 7,711
Plasmodiumfalciparum3D7 12,364,287 5,259

Leishmania.major 15,855,987 8,239
Drosophila.melanogaster 26,836,692 12,606
DanioRerio 31,672,806 24,118
ZeaMays 75,506,157 70,650
OryzaSativa 77,859,006 65,554

Bacillus.subtilis 104,637,978 104,992
MusMusculus 124,647,810 92,857
Homo.Sapiens 175,433,904 140,450
Arabidopsis.Thaliana 198,486,924 151,245
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2.2 mathDNA R package

Figure 10: mathDNA package logo

The analyses are conducted in the R environment and part of

this work is dedicated to assist the development of the exist-

ing R package called mathDNA (Giennerini & Dalena 2021), that

implements some of the functions that will be needed for the

analysis.

The package contains functions for managing strings in general,

as well as DNA sequences. It implements different transforma-

tions on the sequences (base transformations, circular permu-

tation, reverse complement, random permutation) and it can

compute the coverage of different groups of codons in genomes

(codon/code usage). In addition, the package implements func-

tions for computing the so called dichotomic classes, binary variables motivated by the non-power

model of the genetic code (Giannerini et al. 2012, Gonzalez et al. 2009).

The developing version of the R package is available on GitHub3 and it is stable and ready to be

used. In fact, the package already passes the R CMD check with zero notes, zero warnings and zero

errors. Theoretically, therefore, it is ready to be released on CRAN, but there are still plans to add

more features. One of the most important is related to the recognition of comma-free and circular

codes, that are functions already present in another R package called GCATR4 (Starman 2018),

developed in C++ and adapted into the R environment thanks to the Rcpp R package (Eddelbuettel

& François 2011).

In Figure 11 there is the list of the help pages provided in R that displays the function present in

the mathDNA R package with brief descriptions.

3At this link: https://github.com/PaoloDalena/mathDNA . At the time of writing the repository is private,
but things may change. Email me if you have any problems.

4Developement version available at: https://github.com/StarmanMartin/GCATR
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Figure 11: Help pages for mathDNA

2.3 Removal of beginning and ending parts of the sequences

As already mentioned in the chapter on circular codes, the analyses will also focus on the different

behaviours found in the initial and final parts of the sequences. Figure 13, which provides a

summary of the results obtained by considering the sequences of the model genomes, provides

further insight into the behaviour of interest. In particular, in part (a) are shown the plots of

the results for the code coverage in the first 1000 codons, where the three lines represent the

coverage for the best (173, in blue), the worst (192, in red) and the remainder (in green) codes.

Furthermore, in part (b) it is possible to observe the results on the best and worst codes but

for the first 50 codons only, with the comparison with the population mean (dashed lines of the

same colours). Without focusing on how the results were obtained (the specific methods will be

described in the next paragraphs), it is clear that at the beginning there is an unusual behaviour

compared to the rest of the sequences and that, thus, it makes sense to consider the sequences by

removing the initial and final parts.
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Figure 12: R help page for cutseq2 from mathDNA

The procedure for cutting sequences is quite

simple and relies on the cutseq2 function from

mathDNA. As it is explained in the R help page

for this sequences (available in Figure 12), it

subsets the character vector according to the

parameters head and tail, that allows the

user to specify how many character must be

removed. This function is the optimized ver-

sion of the function cutseq (also present in

mathDNA, as we can see in Figure 11), that

works both with vectors of single characters or

unique strings of characters and returns an output of the same format of the input (but it is more

time-consuming).

In order to remove the initial and final part of the sequences during computations, we apply

recursively cutseq2 on every sequence in the genomes and, for each iteration, we also check if the

new dimensions of the sequences are coherent with the specification provided (so, if 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑢𝑡 +
head + tail = 𝑙𝑒𝑛𝑔𝑡ℎ𝑒𝑛𝑡𝑖𝑟𝑒). For the analysis described in the following sections, the values for

head and tail have been set respectively equal to 39 (13 codons) and 30 (10 codons).
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Figure 13: Code coverage distribution of best (173, in blue), worst (192, in red) and remainder (in green) codes -
model genomes.
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2.4 Codon usage on whole genomes

As described in the introductory chapter on circular codons, codon usage refers to the frequency of

occurrence of each of the 64 codons in a sequence. In this section we will illustrate the procedures

for calculating codon usage over the whole genomes, thus considering all the sequences of the

genomes as if they were one very long sequence.

The main operations for computing the codon usage on whole genomes are:

• generating a vector with all the 64 codons in the genetic code (the possible permutations of

three-letter sequences that can be made from the four nitrogenous bases) ⟹ 𝑡𝑟𝑒.𝑠
[1×64]

• unlisting the information present in the genome data, in order to have a unique long vector

made up of all the different sequences in each genome list one after another. The individual

characters corresponding to the different nitrogenous bases are brought together every third

so that the resulting vector consists of a sequence of codons ⟹ 𝑥𝑥0
[1×𝑐𝑜𝑑𝑜𝑛𝑠]

• in order to compute the single codon usage on the whole genome, the proportions of every

codon present in tre.s are inspected in 𝑥𝑥0. The result vector, then, contains the proportions

of usage of every possible codon in the whole genome taken into account. The results for

the codon usage will be stored in a matrix with 64 rows (one for each codon in the genetic

code) and 24 columns (one for each genome under analysis) ⟹ 𝑐𝑢0
[64×24]

An example of the obtained results for AeropyrumPernix and Homo.Sapiens for the first 20 codons

can be found in Table 4. The values in the table are frequencies that sum to 1. For example,

therefore, AAG in Homo.sapiens represents 3.2% of the entire genome (which corresponds to a

value of 0.032 in the table).
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Table 4: Preview of a small part of the results: codon usage of only 20 codons - AeropyrumPernix and Homo.Sapiens.

AeropyrumPernix Homo.Sapiens

AAA 0.009 0.015
AAC 0.018 0.020
AAG 0.037 0.032
AAT 0.004 0.015
ACA 0.010 0.011

ACC 0.014 0.015
ACG 0.011 0.012
ACT 0.009 0.010
AGA 0.010 0.010
AGC 0.025 0.017

AGG 0.050 0.016
AGT 0.005 0.008
ATA 0.041 0.009
ATC 0.010 0.021
ATG 0.024 0.024

ATT 0.009 0.014
CAA 0.002 0.012
CAC 0.011 0.014
CAG 0.017 0.021
CAT 0.004 0.011

[...]
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2.5 Code coverage

As previously explained, the coverage of a code is the cumulative codon usage of the set of codons

belonging to that code. In the following paragraphs will be discussed the different approaches

evaluated for computing the code coverage of the different circular code groups on the DNA

sequences.

2.5.1 Considering whole genomes

The objects needed for this analysis are:

• the matrix containing all the 216 groups of circular codes. This matrix has 216 columns, one

for each circular code, and 20 rows, one for each codon in every group. ⟹ 𝑐𝑐𝑜𝑑
[20×216]

• the vector with all the 64 codons discussed in the previous section ⟹ 𝑡𝑟𝑒.𝑠
[1×64]

• the results of the code usage on whole genomes from the previous section ⟹ 𝑐𝑢0
[64×24]

In order to compute the different coverage of the different circular codes, we apply on the results

of the codon usage for the whole genomes the function cover of the mathDNA package.

Figure 14: R help page for cutseq2 from mathDNA

As we can see from the R help page of this

function (Figure 6), we just have to provide to

this function:

• the set of codons of which we are inter-

ested to compute the coverage in, that in

our case will be the different columns in

𝑐𝑐𝑜𝑑
[20×216]

;

• the vector containing the set of codons

used for computing the codon usage of

the sequence, that in our case will be all

the 64 codons, that are stored in 𝑡𝑟𝑒.𝑠
[1×64]

;
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• the matrix with the results of the codon

usage 𝑐𝑢0
[64×24]

The result matrix (an object called 𝑅𝐸𝑆0
[24×216]

), then, will be a matrix with 24 rows (one for each

genome) and 216 columns (one for each circular code). Table 5 offers an example of the results,

for two genomes and the code groups in the first row of Table 1 only.

Table 5: Preview of a small part of the results: code coverage of sets in the first equivalence class only - Aeropy-
rumPernix and Homo.Sapiens.

173 176 203 206 183 193 182 192

AeropyrumPernix 46.13 45.33 37.63 36.83 28.54 19.32 23.14 13.93
Homo.Sapiens 43.79 41.55 37.57 35.32 27.40 24.64 24.25 21.49

2.5.2 Rolling means

A rolling mean (moving mean or running mean) is a calculation based on the analysis of values by

creating a series of averages of several subsets of complete dataset. Given a series of numbers and

a fixed subset size (span), the first element of the rolling mean is obtained by taking the average

of the initial subset of the number series. Then the subset is modified by shifting forward, so

excluding the first number of the series and including the next value in the subset. The rolling

mean approach is commonly used to smooth out short-term fluctuations and highlight longer-term

trends in time-series analysis.

For the purposes of this research, this particular mean will be applied on the code coverage results

on different spans of codons in the DNA sequences. In particular, 15 different spans will be

evaluated, equal to the numbers from 3 to 31 taken every 2 (i. e. 3, 5, 7, 9 and so on…) in

order to have odd amplitudes and facilitate the understanding of the results. Since we are dealing

with large datasets with many basess (and therefore many codons), to optimize the computations

the R package data.table will be used , which “provides a high-performance version of base R’s

data.frame with syntax and feature enhancements for ease of use, convenience and programming

speed.” (Dowle & Srinivasan 2020)

In particular, as we can see in the corresponding code in Appendix C, the function frollmean has

been applied, providing the vector of spans (the object bw) and by fixing the alignment to ‘center’.
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This means that the rolling means will be centered, so the results will be placed at the center of

the range. For example, if the span is equal to 3 and the length of the sequence is 4, in the second

position there will be the average of the code coverage of the first three codons, in the third one

will be present the average of the coverage considering the second, third and fourth codons, while

in the first and in the last position of the results a NaN will be provided.

Before proceeding with these analyses, as we are dealing with genomes of heterogeneous lengths,

it is necessary to set a value for the minimum number of codons for the length of the sequences

(thr parameter). In these processes, this value has been set equal to 1000. This means that only

sequences in the genome lists that are at least 1000 codons long will be taken into account and, in

particular, only the first 1000 codons in these sequences will be considered.

The main steps for computing the code coverage with this approach are:

• removing the sequences lower than thr codons;

• taking from these sequences the first thr codons, in order to have results of fixed length;

• computing on each sequence (with fixed length equal to 1000) of every genome the rolling

mean of the coverage according to the 15 selected spans for the best code (173), the worst code

(192) and the remainder code. In this way we will create (for each genome) three different

3-dimensional arrays, with dimensions equal to: thr(1000), the number of considered spans

(15) and the number of suitable sequences in the considered genome (that changes for every

list) ⟹ 𝑟𝑒1(𝑏𝑒𝑠𝑡)
[𝑡ℎ𝑟×𝑠𝑝𝑎𝑛𝑠×𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠]

𝑟𝑒8(𝑤𝑜𝑟𝑠𝑡)
[𝑡ℎ𝑟×𝑠𝑝𝑎𝑛𝑠×𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠]

𝑟𝑒3(𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)
[𝑡ℎ𝑟×𝑠𝑝𝑎𝑛𝑠×𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠]

• starting from these intermediate results, computing the means considering all the available

results for each sequence in the 24 genomes. In this way we will have 15 (one for each span)

uni-dimensional vectors (long 1000) of mean results for every genome. The results will be

stored in three different 3-dimensional arrays with dimensions: 1000 (thr), 15 (spans) and

24 (genomes). ⟹ 𝑅𝐸1(𝑏𝑒𝑠𝑡)
[1000×15×24]

𝑅𝐸8(𝑤𝑜𝑟𝑠𝑡)
[1000×15×24]

𝑅𝐸3(𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)
[1000×15×24]

Of course, when considering different spans, different NaN will be created due to the construction

of the rolling means. In fact, in Table 6, where it is displayed a small part of results obtained

considering the best code (173) in two genomes with different spans, it is possible to check that

we do not have results for the first rows depending on the amplitude of the rolling windows.

Circular Codes, Reading Frames And Error Correction In Translation 28



2.5 Code coverage 2 DATA AND ALGORITHMS DESCRIPTION

Table 6: Preview of a small part of the results: code coverage with the rolling mean approach with different spans
- AeropyrumPernix and Homo.Sapiens.

Span = 3 Span = 5 Span = 7 [...] Span = 15

Aero.P Homo.S Aero.P Homo.S Aero.P Homo.S Aero.P Homo.S

0.242 0.268
0.303 0.388 0.291 0.303
0.333 0.361 0.364 0.376 0.351 0.328
0.364 0.359 0.400 0.373 0.455 0.393

0.515 0.379 0.491 0.390 0.481 0.394
0.576 0.413 0.582 0.406 0.532 0.407
0.667 0.437 0.600 0.428 0.532 0.415 0.448 0.388
0.667 0.451 0.564 0.437 0.558 0.427 0.455 0.419
0.485 0.438 0.582 0.440 0.558 0.439 0.448 0.420

A limit of this approach is the fact that we are artificially selecting only a subset of the available

sequences (in particular the ones longer than thr codons) and that we are obtaining results only

for the first thr codons. Even if 1000 is a quite big number that allows us to have statistically

significant estimates, this could be a problem since we are dealing with genomes with an average

sequence length that is around 1000 (for example, 962.96 for AeropyrumPernix or 1249.08 for

Homo.Sapiens) but also with genomes with a larger average sequence length (for example, 2128.88

for Drosophila.Melanogaster). These non-representative issues will be solved in the next approaches

for computing the codon usage.

2.5.3 Considering every sequence

In order to discuss how to obtain the results for code coverage taking into account all available

DNA sequences for the genomes under consideration, it is necessary to briefly focus on how codon

usage is calculated for this approach.

2.5.3.1 Codon usage for every sequence A solution the non-representative issue of the

rolling mean approach with thr is offered by considering the codon usage results for every se-

quence among all the available for genomes in analysis. This means that, as we can see from
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the third column in Table 3, we will have 713 vectors of results for AeropyrumPernix, 1150 for

Thermoplasma.acidophilum and so on until 151245 for Arabidopsis.Thaliana.

The main steps of this computation are:

• extracting the maximum number of sequences among the genomes taken into account. Look-

ing back at third column of Table 3, the general value would be 151245 (of Arabidop-

sis.Thaliana), but during the analysis genomes have been split for making the computations

less time-consuming, hence there is a part of code that computes this value to avoid any

issue ⟹ 𝑚𝑎𝑥𝑙𝑒𝑛𝑠𝑒𝑞

• computing the codon usage on every sequence of the genomes taken into account and storing

the results in a 3-dimensional array with dimensions equal to: the number of genomes of

interest (24), the length of the longest sequence among all the sequences of the genomes of

interest previously described and the 64 codons of the genetic code ⟹ 𝑐𝑢_𝑒𝑎𝑐ℎ
[24×𝑚𝑎𝑥𝑙𝑒𝑛𝑠𝑒𝑞×64]

Since all the available sequences in data are taken into account, the shortest sequences (the very

small ones) could create problems in computations, because they present too many values equal

to zero for the usage of whole codon blocks. This problem has been solved in two different ways:

A - by considering for the computations all the available sequences, recognizing the problematic

sequences (by simply checking the dimensions of the results) and substituting them with NAs.

This method also allows to save the length of the problematic sequences, in order to understand

if these are actually short and how many sequences have been excluded from the analysis;

B - by filtering before the analysis the shortest sequences according to an arbitrary threshold

(chosen equal to 300 codons) and removing them a priori from computations.

Both the methods solve the problem and lead to almost equal results, therefore in the following

there will be only presented and discussed the values obtained by considering the solving method

A, as it allows us to evaluate all the information available in our dataset.

In Table 7 is displayed a small part of the cu_each object. In particular, the results for the first

5 sequences of the genomes AeropyrumPernix and Homo.Sapiens are present, but only the first

10 (out of 64) codons are displayed. We can see that there are NAs for the second sequence of
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Homo.Sapiens, hence this is an example of a problematic sequence. In fact, this sequence is only

363 basis (therefore, 131 codons) long.

Table 7: Preview of a small part of the results: codon usage for the first 5 sequences and 10 codons only -
AeropyrumPernix and Homo.Sapiens.

AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC

AeropyrumPernix
1 0.065 0.000 0.020 0.025 0.005 0.005 0.005 0.005 0.035 0.020
2 0.005 0.068 0.068 0.000 0.010 0.005 0.016 0.000 0.000 0.016
3 0.017 0.023 0.048 0.009 0.012 0.009 0.006 0.010 0.027 0.032
4 0.003 0.012 0.063 0.003 0.003 0.009 0.012 0.007 0.009 0.028
5 0.014 0.014 0.033 0.014 0.014 0.014 0.009 0.024 0.005 0.038

Homo.Sapiens
1 0.022 0.011 0.022 0.011 0.000 0.011 0.055 0.000 0.000 0.022
2 NA NA NA NA NA NA NA NA NA NA
3 0.028 0.012 0.030 0.022 0.010 0.010 0.008 0.010 0.016 0.012
4 0.000 0.027 0.045 0.000 0.003 0.024 0.024 0.000 0.000 0.013
5 0.023 0.010 0.035 0.012 0.017 0.004 0.004 0.023 0.004 0.006

2.5.3.2 Code coverage for every sequence Starting from the codon usage for every se-

quence described in the previous section, calculating the coverage of the different circular codes is

straightforward. In fact, the function cover from mathDNA will be used, similarly for what has been

done for code coverage on whole genomes, but considering only one sequence at a time instead of

all the sequences of one genomes merged into a very long one.

Since we are dealing with many iterations, instead of computing the coverages for all the 216

circular code groups, we will focus on only the 27 best and 27 worst codes (hence, only the ones in

the first and last column in Table 1). In this way, we can easily obtain the result for the remainder

group of codon as 1 − (𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑏𝑒𝑠𝑡 + 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤𝑜𝑟𝑠𝑡).

The results will be stored in a 3-dimensional array with dimensions equal to:

• 24, the number of genomes taken into account;

• 151245, the maximum number of sequences among all the genomes in analysis (that corre-

sponds to the number of sequences for Arabidopsis.Thaliana);
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• 54 (27 + 27), that is the number of best and worst code groups for which the coverage are

computed.

⟹ 𝑟𝑒𝑠_𝑎𝑙𝑙𝑠𝑒𝑞𝑠
[24×151245×54]

In Table 8 it is displayed a small part of the results of this process.

Table 8: Preview of a small part of the results: code coverages of the first three pairs of best and worst codes in
the first 5 sequences only - AeropyrumPernix and Drosophila.melanogaster.

Best codes Worst codes

173 23 98 192 87 53

AeropyrumPernix
1 0.335 0.325 0.330 0.225 0.245 0.235
2 0.599 0.536 0.516 0.062 0.052 0.042
3 0.459 0.443 0.424 0.166 0.174 0.165
4 0.495 0.464 0.463 0.103 0.101 0.093
5 0.443 0.448 0.415 0.146 0.137 0.165

Drosophila.melanogaster
1 0.481 0.480 0.483 0.179 0.182 0.187
2 0.606 0.587 0.552 0.082 0.085 0.110
3 0.615 0.604 0.581 0.099 0.099 0.094
4 0.484 0.457 0.471 0.199 0.208 0.202
5 0.502 0.503 0.484 0.178 0.190 0.202

This approach makes it possible to understand how much variability there is in the coverage of

different sequences of the same genome, and allows us to look more closely at the relationships

between different codes (best, worst and remainder) on the same sequence.
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2.5.4 By position

In order to inspect more in depth if there are particular results related to the beginning and the

end of the sequences, it could be useful also to consider the code coverage results for every position

in the genomes. Therefore, instead of considering global results for the entire sequences in the

genomes, we will focus on the results for the code coverages for the codons that are placed in the

same position in the different sequences of every genome.

Let’s consider, as an example, an imaginary and simple genome that is made up of only three

sequences, with lengths equal to 3, 5 and 4 codons (displayed in Table 9). Let’s imagine to

compute the coverage for a code group that is made up only of AAA. Following the reasoning in

the previous sections, in order to compute the code coverage for every sequence we have to check

how many times AAA is present in every sequence (hence, in every row) and we will have a result

for every sequence in the genome. Instead, for computing the codon usage by position, we have to

study how many times AAA is present in every position of the sequences (hence, in every column)

and we will have a result as long as the length of the longest sequence in the genome.

Table 9: Example of positional approach

1 2 3 4 5 By sequence

Sequence 1 AAA TTT GGG → 1/3
Sequence 2 AAA CCC GGG CCC AAA → 2/5
Sequence 3 TTT AAA CCC AAA → 2/4

↓ ↓ ↓ ↓ ↓
By position 2/3 1/3 0/3 1/2 1/1

Since we are interested in the behavior of the code coverage at the beginning and at the end of

the sequences, for this computations we will evaluate the entire sequences instead of the cut ones.

The algorithm for obtaining the code coverage results by position is similar to the one described

for the rolling means approach, but in this case we apply the base function mean (instead of

frollmean) by columns (instead of rows). Furthermore, to store the results we need to extract

the length of the longest sequence among all the ones of the genomes of interest. This value, that

will be called maxlencod, is different from maxlenseq, which is the maximum value for the number

of sequences in the considered genomes (and it has been computed for the codon usage for every
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sequence).

We will do the computations only for the best and worst code groups in general, hence, for the code

group 173 and 192, and for the remainder of these two. The results, then, will be three different

matrix with dimensions equal to the genomes under analysis (24) and maxlencod, that refers to the

three group of codes considered. ⟹ 𝑅𝐸𝑆𝑝𝑜𝑠1(𝑏𝑒𝑠𝑡)
[24×𝑚𝑎𝑥𝑙𝑒𝑛𝑐𝑜𝑑]

𝑅𝐸𝑆𝑝𝑜𝑠8(𝑤𝑜𝑟𝑠𝑡)
[24×𝑚𝑎𝑥𝑙𝑒𝑛𝑐𝑜𝑑]

𝑅𝐸𝑆𝑝𝑜𝑠3(𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)
[24×𝑚𝑎𝑥𝑙𝑒𝑛𝑐𝑜𝑑]

As a consequence, if in genome A the longest sequence is shorter than the longest sequence in

genome B, the results for genome A will present NAs. In fact, in Table 10, which offers an example

of the results related to the genomes AeropyrumPernix and Helicobacter.pylori, it is possible to see

that after the position 1332 there are no results for the first genome under consideration. This is

due to the fact that the longest sequence in AeropyrumPernix is 1332 codons long. Furthermore,

from the last three results for this genome (in positions 1330-1331-1332) it is easy to infer that

there is only one sequence with that length, since there are only zeros and ones.

Table 10: Preview of a small part of the results: code coverages computed on the first and last positions - Aeropy-
rumPernix and Helicobacter.pylori.

1 2 3 4 5 [...] 1330 1331 1332 1333 1334 1335

AeropyrumPernix
173 (Best) 0 0.41 0.41 0.45 0.39 0.00 0.00 0.00
Remainder 1 0.40 0.39 0.42 0.44 1.00 1.00 0.00
192 (Worst) 0 0.20 0.20 0.12 0.17 0.00 0.00 1.00

Helicobacter.pylori
173 (Best) 0 0.28 0.36 0.34 0.38 0.36 0.46 0.46 0.27 0.64 0.64
Remainder 1 0.52 0.48 0.45 0.42 0.46 0.36 0.36 0.36 0.18 0.18
192 (Worst) 0 0.20 0.16 0.21 0.20 0.18 0.18 0.18 0.36 0.18 0.18
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2.6 Bootstrap test

The bootstrap test previously presented will be applied considering 10,000 bootstrap replications.

Moreover, in order to provide universality to the results, only the most general hypothesis that

the occurrence of circular codes is uniform will be considered and all 16 disjoint pairs of best and

worst codes (the bold rows in Table 1) will be taken into account.

The codtest function (in Appendix C) will be used to run the test, with the following parameters:

• B = 10000, the bootstrap replications;

• quant = (0.0001, 0.9999), the quantile corresponding to the number of replications;

• replace = FALSE, to create subsets without repeating codons;

• weight = FALSE, for the codons to be extracted from a uniform distribution;

• the parameters cod and xf, which correspond respectively to the vector of codons constituting

the best code and to the codon usage of the genome under consideration, vary according to

the pair of codes and the genome under consideration.
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3.1 Differences in codon usage between entire and cut sequences

In this section, the results of codon usage calculated on whole genomes will be presented

and discussed.

Table 11 contains the values of the differences between the codon usage calculated on the entire

sequences and on the sequences without initial and final parts for the model genomes. In particular,

the codons that are part of the best (173) and worst (192) codons and the ATG codon, which

encodes methionine but also indicates the start of the protein coding region, are highlighted in

this table. In addition, in Table 19 in Appendix A, it is possible to observe the individual values

for entire and cut sequences, as well as the difference between them, for all the 64 codons in the

genetic code.

Looking at Table 19, it can be seen that, with the exception of the ATG codon, for which we

expect it to be systematically more present in whole sequences as it is always present at the

beginning of the sequence, there does not seem to be any particular association between individual

codons and differences in code coverage, as the values are almost all very close to zero. However,

looking carefully at Table 11, which groups the codons according to their code group 173 and

192 membership, a particular feature of the results emerges. In fact, it is not difficult to notice

that the vast majority of differences for codons belonging to group 173 correspond to a negative

value, while for codons belonging to group 192 the positive and negative values are balanced. It

can be deduced, therefore, that the initial part of the sequences is characterised by the absence

of codons from group 173, since they systematically appear more frequently in the cut sequences.

This particular observation, which is in line with expected results from previous studies on code

coverage at the beginning of sequences, will also be confirmed by forthcoming results.
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Table 11: Differences in codon usage between entire and cut sequences for the codons in the best (173) and worst
(192) codes and for the start codon - model genomes. These differences have been calculated using the formula
below.

AePe HePy EsCo PlFa DrMe HoSa Mean

Best code (173)
AAC -0.650 -0.441 -0.219 -0.016 -0.053 -0.277 -0.276
GTT 0.129 0.167 0.001 0.031 -0.043 -0.246 0.007
AAT -0.089 -0.168 0.174 -1.605 -0.017 -0.266 -0.329
ATT 0.045 0.084 0.050 -0.096 -0.011 -0.277 -0.034
ATC -0.098 -0.429 -0.252 0.027 -0.135 -0.250 -0.189
GAT -0.008 -0.651 -0.656 -0.628 -0.131 -0.376 -0.408
CAC -0.482 -0.050 -0.096 0.036 -0.107 -0.065 -0.127
GTG -0.482 -0.749 -0.708 0.024 -0.179 -0.098 -0.365
CAG 0.043 -0.090 -0.436 0.020 -0.304 -0.136 -0.151
CTG -0.025 -0.012 -0.922 0.056 -0.098 -0.119 -0.187
CTC -0.036 -0.011 0.016 0.063 0.013 0.007 0.009
GAG -0.405 -0.210 -0.114 0.026 -0.401 -0.268 -0.229
GAA 0.201 -0.311 -0.517 -0.410 -0.111 -0.307 -0.243
TTC -0.704 -0.080 -0.178 0.114 -0.044 -0.325 -0.203
GAC -0.658 -0.278 -0.377 0.021 -0.114 -0.427 -0.306
GTC -0.409 -0.169 -0.232 0.039 -0.046 -0.197 -0.169
GCC -0.887 -0.387 -0.571 0.033 -0.120 0.262 -0.278
GGC -0.165 -0.696 -0.874 0.008 -0.135 -0.050 -0.319
GTA -0.016 0.121 0.053 -0.036 -0.015 -0.062 0.007
TAC -0.902 -0.233 -0.221 0.129 -0.071 -0.311 -0.268

Worst code (192)
ACA 0.286 0.095 0.336 -0.106 -0.002 -0.150 0.077
TGT 0.051 0.061 -0.013 -0.096 -0.018 -0.028 -0.007
ACT -0.245 -0.162 0.125 -0.066 -0.055 -0.142 -0.091
AGT 0.244 0.054 0.098 -0.094 -0.010 -0.061 0.038
AGA 0.309 0.277 0.295 0.064 0.043 0.025 0.169
TCT 0.181 -0.011 0.048 -0.078 -0.031 0.004 0.019
CCA 0.258 0.124 0.052 -0.026 -0.109 -0.043 0.043
TGG 0.233 0.021 -0.169 0.039 0.045 -0.076 0.016
CCG -0.182 -0.124 -0.620 0.007 -0.083 0.182 -0.137
CGG 0.101 -0.030 0.016 0.008 -0.018 0.070 0.025
CGA 0.090 0.099 0.179 0.005 0.004 0.048 0.071
TCG 0.089 -0.010 -0.082 0.041 -0.003 0.253 0.048
GCA -0.354 0.074 0.046 0.017 0.022 -0.045 -0.040
TGC 0.049 -0.127 -0.087 0.035 -0.082 0.001 -0.035
GGA 0.232 0.069 0.074 -0.041 -0.154 -0.042 0.023
TCC -0.238 -0.061 -0.014 0.056 -0.106 0.201 -0.027
TAA 0.603 1.594 1.784 0.875 0.577 0.574 1.001
TTA 0.042 0.290 0.460 -0.063 0.089 -0.093 0.121
TCA 0.004 0.068 0.181 -0.017 0.027 -0.063 0.033
TGA 0.612 0.790 0.964 0.268 0.349 1.108 0.682

ATG 2.598 2.451 2.580 1.156 1.348 2.210 2.057

difference = (𝑐𝑢𝑒𝑛𝑡
𝑖 ∗ 1000) − (𝑐𝑢𝑐𝑢𝑡

𝑖 ∗ 1000)
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3.2 Differences in code coverage between entire and cut sequences

In this section, the results of code coverage calculated on whole genomes will be presented

and discussed.

Tables 12, 13 and 14 show the differences between the results obtained considering the whole

sequences and the sequences without the first and last codons. In particular, Table 12 shows the

differences in results for the 27 best codons, Table 13 for the 27 worst codons and Table 14 for the

27 remainder codons. In Appendix A are displayed the results for all genomes under analysis (in

Tables 22, 23 and 24).

Observing the values in the tables, it is clear that the differences for the coverage of the best

codes (i.e. those in the first column of Table 1) are all negative, while those for the coverage of

the worst codes (last column in Table 1) and the remainder codes are almost all positive. It can

be stated with certainty, therefore, that in the initial and final parts of the sequences there are

generally fewer codons present than in the 27 best groups of circular codes. In addition, it can be

observed that the values for the differences in the code coverage of the worst groups are, in almost

all cases, greater (both on average and taken individually) than those for the code coverage of the

remainder groups. This leads us to conclude that in the initial and final parts of the sequences

the systematic lower presence of codons from the best groups corresponds to a systematic higher

presence of codons from the worst groups, and that this trend is not only due to the fact that

we consider disjointed groups of codons, but suggests an actual grouping of codons on the basis

of properties related to circular codes theory. It should also be emphasised that this interesting

result suggests a universal property, as it applies to all genomes analysed (Tables 22, 23 and 24).
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Table 12: Differences in code coverage between entire and cut sequences for the 27 best codes - model genomes.
These differences have been calculated using the formula below.

A.Pernix H.pylori E.coli P.Falcip D.melano H.Sapiens Mean

173 -0.560 -0.460 -0.608 -0.217 -0.212 -0.379 -0.406
23 -0.433 -0.413 -0.644 -0.231 -0.217 -0.380 -0.386
98 -0.479 -0.453 -0.545 -0.214 -0.203 -0.345 -0.373
25 -0.468 -0.459 -0.569 -0.242 -0.210 -0.362 -0.385
20 -0.342 -0.413 -0.605 -0.256 -0.215 -0.363 -0.366

166 -0.549 -0.388 -0.476 -0.154 -0.194 -0.360 -0.354
4 -0.423 -0.342 -0.513 -0.168 -0.198 -0.362 -0.334
30 -0.364 -0.216 -0.442 0.021 -0.147 -0.278 -0.238
117 -0.458 -0.388 -0.438 -0.179 -0.192 -0.343 -0.333
111 -0.331 -0.342 -0.474 -0.193 -0.196 -0.345 -0.314

22 -0.390 -0.390 -0.628 -0.238 -0.204 -0.338 -0.365
172 -0.626 -0.551 -0.494 -0.219 -0.179 -0.345 -0.402
21 -0.500 -0.505 -0.531 -0.233 -0.183 -0.347 -0.383
24 -0.535 -0.551 -0.455 -0.244 -0.177 -0.328 -0.382
97 -0.546 -0.545 -0.432 -0.216 -0.169 -0.312 -0.370

171 -0.408 -0.505 -0.492 -0.258 -0.181 -0.329 -0.362
3 -0.490 -0.434 -0.399 -0.170 -0.165 -0.328 -0.331
165 -0.616 -0.480 -0.363 -0.156 -0.160 -0.327 -0.350
26 -0.583 -0.528 -0.478 -0.226 -0.166 -0.303 -0.381
123 -0.456 -0.482 -0.515 -0.240 -0.171 -0.304 -0.361

115 -0.524 -0.480 -0.324 -0.181 -0.158 -0.310 -0.330
161 -0.398 -0.434 -0.360 -0.196 -0.163 -0.311 -0.310
122 -0.365 -0.482 -0.476 -0.266 -0.168 -0.287 -0.341
41 -0.312 -0.390 -0.306 -0.217 -0.155 -0.277 -0.276
107 -0.325 -0.396 -0.328 -0.201 -0.147 -0.249 -0.274

198 -0.311 -0.168 -0.257 -0.003 -0.105 -0.222 -0.178
137 -0.279 -0.439 -0.422 -0.287 -0.161 -0.253 -0.307

difference = (𝐶𝑒𝑛𝑡
𝑏 ∗ 100) − (𝐶𝑐𝑢𝑡

𝑏 ∗ 100)
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Table 13: Differences in code coverage between entire and cut sequences for the 27 worst codes - model genomes.
These differences have been calculated using the formula below.

A.Pernix H.pylori E.coli P.Falcip D.melano H.Sapiens Mean

192 0.236 0.309 0.367 0.083 0.049 0.172 0.203
87 0.231 0.272 0.376 0.108 0.051 0.172 0.202
53 0.217 0.261 0.262 0.074 0.022 0.167 0.167
56 0.269 0.304 0.236 0.085 0.014 0.151 0.176
89 0.264 0.267 0.244 0.110 0.017 0.150 0.175

191 0.280 0.268 0.381 0.086 0.067 0.160 0.207
86 0.275 0.231 0.390 0.110 0.069 0.159 0.206
88 0.134 0.179 0.292 0.110 0.035 0.167 0.153
135 0.312 0.263 0.250 0.088 0.033 0.139 0.181
145 0.307 0.226 0.258 0.113 0.035 0.138 0.180

99 0.132 0.206 0.272 0.079 0.034 0.105 0.138
195 0.417 0.372 0.374 0.117 0.108 0.257 0.274
91 0.412 0.335 0.383 0.142 0.110 0.256 0.273
57 0.450 0.367 0.243 0.119 0.074 0.236 0.248
54 0.398 0.324 0.269 0.108 0.082 0.251 0.239

208 0.445 0.331 0.251 0.144 0.076 0.235 0.247
90 0.456 0.294 0.397 0.144 0.128 0.244 0.277
194 0.461 0.331 0.388 0.120 0.126 0.245 0.278
66 0.318 0.306 0.270 0.089 0.092 0.191 0.211
147 0.313 0.270 0.279 0.113 0.094 0.190 0.210

136 0.493 0.326 0.257 0.122 0.092 0.224 0.252
207 0.488 0.289 0.265 0.147 0.094 0.223 0.251
149 0.345 0.265 0.147 0.116 0.059 0.169 0.184
93 0.343 0.195 0.196 0.151 0.072 0.218 0.196
146 0.679 0.437 0.409 0.216 0.185 0.328 0.376

210 -0.103 0.085 0.184 0.140 0.011 0.146 0.077
154 0.200 0.170 0.079 0.120 0.037 0.165 0.128

difference = (𝐶𝑒𝑛𝑡
𝑤 ∗ 100) − (𝐶𝑐𝑢𝑡

𝑤 ∗ 100)
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Table 14: Differences in code coverage between entire and cut sequences for the 27 remainder sets - model genomes.
These differences have been calculated using the formula below.

A.Pernix H.pylori E.coli P.Falcip D.melano H.Sapiens Mean

r_1 0.323 0.151 0.241 0.134 0.164 0.206 0.203
r_2 0.202 0.141 0.269 0.123 0.166 0.209 0.185
r_3 0.262 0.192 0.283 0.140 0.181 0.179 0.206
r_4 0.199 0.155 0.333 0.157 0.196 0.210 0.208
r_5 0.078 0.146 0.361 0.146 0.198 0.213 0.190

r_6 0.269 0.121 0.095 0.068 0.127 0.200 0.147
r_7 0.148 0.111 0.123 0.058 0.129 0.203 0.129
r_8 0.230 0.037 0.151 -0.131 0.112 0.111 0.085
r_9 0.145 0.125 0.188 0.091 0.159 0.204 0.152
r_10 0.024 0.116 0.216 0.081 0.161 0.207 0.134

r_11 0.258 0.184 0.357 0.159 0.170 0.233 0.227
r_12 0.209 0.179 0.120 0.102 0.071 0.088 0.128
r_13 0.088 0.170 0.148 0.091 0.073 0.090 0.110
r_14 0.085 0.184 0.213 0.125 0.103 0.092 0.134
r_15 0.147 0.221 0.163 0.108 0.088 0.060 0.131

r_16 -0.036 0.174 0.240 0.114 0.105 0.094 0.115
r_17 0.034 0.140 0.002 0.026 0.036 0.084 0.054
r_18 0.155 0.149 -0.026 0.036 0.034 0.082 0.072
r_19 0.265 0.222 0.208 0.137 0.075 0.112 0.170
r_20 0.143 0.213 0.236 0.127 0.077 0.114 0.152

r_21 0.031 0.154 0.067 0.059 0.066 0.086 0.077
r_22 -0.090 0.144 0.095 0.049 0.068 0.088 0.059
r_23 0.019 0.217 0.328 0.150 0.109 0.118 0.157
r_24 -0.031 0.196 0.110 0.066 0.083 0.058 0.080
r_25 -0.355 -0.041 -0.081 -0.015 -0.038 -0.079 -0.101

r_26 0.414 0.084 0.073 -0.137 0.094 0.076 0.101
r_27 0.079 0.268 0.343 0.167 0.124 0.088 0.178

difference = (𝐶𝑒𝑛𝑡
𝑟 ∗ 100) − (𝐶𝑐𝑢𝑡

𝑟 ∗ 100)
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3.3 A critical investigation on the rolling means approach

In this section, the code coverage results obtained considering the rolling means approach

will be presented and discussed.

In Figures 15 and 16 are displayed the distributions of the results for the code coverage of the best

code group (173) obtained through the rolling means approach. There are two different boxplots

for each span of the rolling windows: the one in green refers to the code coverage calculated on

the sequences without initial and final part, while the one in blue refers to the results obtained

considering the entire sequences. The blue and the red line, on the other hand, indicate the value

for the code coverage calculated on the whole genome taking into account the cut sequences and

the entire sequences, respectively. So, to be clear, the blue line for the graphs referring to the code

coverage for the best code will correspond to the sum of the codon usage results corresponding to

the 20 codons that constitute the code group 173 (listed in the first column of the Table 2).

Figures 17 and 18 show the results for the worst code (192). Also in this case we have two boxplots

referring to the cut and entire sequences and there are the two lines for the code coverage calculated

on the whole genome.

Figure 15: Coverages of the best code (173) calculated using the rolling means approach: cut (green box) vs
entire (blue box) sequences. The code coverage results computed considering the whole genome are displayed with
blue and red lines respectively when the entire and the cut sequences are taken into account. - AeropyrumPernix,
Helicobacter.pylori and Escherichia.coli.
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Figure 16: Coverages of the best code (173) calculated using the rolling means approach: cut (green box) vs entire
(blue box) sequences. The code coverage results computed considering the whole genome are displayed with blue and
red lines respectively when the entire and the cut sequences are taken into account. - Plasmodiumfalciparum3D7,
Drosophila.melanogaster and Homo.Sapiens.

Figure 17: Coverages of the worst code (192) calculated using the rolling means approach: cut (red box) vs entire
(yellow box) sequences. The code coverage results computed considering the whole genome are displayed with
blue and red lines respectively when the entire and the cut sequences are taken into account. - AeropyrumPernix,
Helicobacter.pylori and Escherichia.coli.
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Figure 18: Coverages of the best code (192) calculated using the rolling means approach: cut (red box) vs entire
(yellow box) sequences. The code coverage results computed considering the whole genome are displayed with blue
and red lines respectively when the entire and the cut sequences are taken into account. - Plasmodiumfalciparum3D7,
Drosophila.melanogaster and Homo.Sapiens.

Looking at the graphs there are several comments that can be made:

• as the span of the rolling windows increases, the distributions tend to be less and less wide,

which is an expected result given the construction of the rolling means. In particular, how-

ever, it can be observed that the results tend to stabilise already around spans 9-11.

• the distributions of the results considering entire sequences or those without initial and final

parts are almost identical, especially when larger genomes are taken into account.

• the width of the distribution tends to be more limited as the number of sequences in the

genome increases (it should be noted that the limit on the y-axis varies between the graphs of

the AeropyrumPernix, Helicobacter.pylori, Escherichia.coli group and those of the Plasmod-

iumfalciparum3D7, Drosophila.melanogaster, Homo.Sapiens group), which can be explained

by the fact that the larger the sample, the less variable the results.

• the boxplots are not centred on what can be considered as the benchmark for these results,

i.e. the code coverage calculated over the whole genome (red and blue lines). This is due

to the fact that, as previously explained, when calculating code coverage with the rolling

means approach, only sequences longer than 1000 codons are artificially selected and only

the first 1000 codons of these are analysed. This particular result may suggest that the code
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coverage results may be correlated with the length of the sequences under analysis, as will

be discussed in the following paragraphs.

3.4 Relationships between best and worst codes coverage on

individual sequences

In this section, the code coverage results obtained by considering all available sequences in

the genomes of interest are evaluated.

In Figures from 19 to 24 are displayed the scatterplots of the results for the code coverage obtained

considering every sequence in the model genomes. Thus, each point in the scatterplots corresponds

to a particular sequence in the genome under consideration; in fact, it can easily be observed that

the number of points in the graphs grows as the sequences in the genome increase. In particular,

every figure is made up of three scatterplots:

• in the first one, on the left, there are the code coverage results for the best code (173) on

the x-axis and for the worst code (192) on the y-axis;

• in the second one, in the middle, there are the code coverage results for the best code (173)

on the x-axis and for the remainder code on the y-axis;

• in the third one, on the right, there are the the code coverage results for the worst code (192)

on the x-axis and for the remainder code on the y-axis.

In this part only the results for the first best (173), worst (192) and remainder codes are presented,

but the results have been obtained for all the 27 best, worst and remainder codes (in the first and

last columns in Table 1). In Appendix B it is possible to observe the 81(27 × 3) scatterplots for

all the combinations of best vs worst, best vs remainder and worst vs remainder for the genomes

Drosophila.melanogaster and Homo.Sapiens (in Figures 35 and 36).

Moreover, in the plots it is also possible to observe the quadratic curve fitted on the points using

functions in the ggplot2 package (Wickham 2016) with the coefficient of determination (𝑅2),
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i.e. the proportion of the variation in the dependent variable that is predictable from the inde-

pendent variable taking into account the quadratic model 𝑦 = 𝑎𝑥 + 𝑏𝑥2 + 𝑐. In addition, Tables

15 (below), 20 and 21 (in Appendix B) present the coefficients of determination (again for a

quadratic model) for the three possible combinations (best vs worst, best vs remainder, worst vs

remainder) for the first three best and worst codes, i.e. pairs 173-192, 23-87 and 98-53 respec-

tively.

It should be noted that in Figures from 19 to 24 and 35 - 36, the term complement is intended

as a synonym for remainder code. It should not be confused, then, with the complementary DNA

sequence, i.e. the sequence obtained by substituting the nitrogenous bases on a string with the

complementary ones.

Figure 19: Relationships between the coverage of the best (173), worst(192) and remainder codes for individual
sequences - AeropyrumPernix.

Figure 20: Relationships between the coverage of the best (173), worst(192) and remainder codes for individual
sequences - Helicobacter.pylori.

Circular Codes, Reading Frames And Error Correction In Translation 46



3.4 Relationships between best and worst codes coverage on individual sequences 3 RESULTS

Figure 21: Relationships between the coverage of the best (173), worst(192) and remainder codes for individual
sequences - Escherichia.coli.

Figure 22: Relationships between the coverage of the best (173), worst(192) and remainder codes for individual
sequences - Plasmodiumfalciparum3D7.

Figure 23: Relationships between the coverage of the best (173), worst(192) and remainder codes for individual
sequences - Drosophila.melanogaster.
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Figure 24: Relationships between the coverage of the best (173), worst(192) and remainder codes for individual
sequences - Homo.Sapiens.

Looking at the scatterplots in Figures from 19 to 24 and the different values for 𝑅2 in Tables 15,

20 and 21, it is clear that the relationship between the best with the worst code is generally grater

than the ones between the best and worst code with the remainder one. In particular, it can be

observed that the values for 𝑅2 between the best and worst codes are always significantly higher

than those linking the worst code to the remainder. This observation holds for almost all cases also

when comparing the values obtained considering the best-worst and the best-remainder code pairs.

Moreover, it is of great interest that the worst and remainder groups are almost uncorrelated (𝑅2

values are very close to zero).

These observations make it possible to generalise the interpretation given above by examining the

different results for code coverage. In fact, if before we observed a correspondence between the

groups obtained by evaluating the theory of circular codes and differences in the results referring

only to the initial and final parts of the sequences, now it is possible to draw general conclusions

regarding the whole sequences. It can be observed, in fact, that the codons present in the best

codons are systematically more present and that those that constitute the worst groups are system-

atically less present. The significant finding is that this inverse relationship is not due merely to

the fact that disjointed subsets of the total group of 64 codons are considered, since the correlation

between the considered codes and the remainder one are not equally strong (indeed, one of them

is almost null).

It can therefore be concluded that there is a general grouping of codons present in DNA coding

sequences according to the properties associated with the theory of circular codes. As in the

previous discussions, these results apply to all organisms considered in the analyses.
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Table 15: R-squared of quadratic regression: codes 173, 192 and remainder- all the genomes under analysis.

173-192 173-rem 192-rem

AeropyrumPernix 0.439 0.325 0.073
Thermoplasma.acidophilum 0.451 0.319 0.054
P.Horikoshii 0.618 0.099 0.221
Pyrococcus 0.375 0.269 0.133
Staphylococcus.aureus 0.268 0.316 0.187

Helicobacter.pylori 0.209 0.541 0.075
Methanosarcina 0.379 0.432 0.038
Archaeoglobus 0.350 0.356 0.105
Escherichia.coli 0.573 0.384 0.009
Streptomyces.coelicolorA3 0.559 0.543 0.010

M.Xanthus 0.561 0.505 0.008
Caenorhabditis.elegans 0.640 0.150 0.146
Sulfolobus.solfataricus 0.511 0.163 0.128
Schizosaccharomyces.Pombe 0.424 0.046 0.373
Plasmodiumfalciparum3D7 0.492 0.297 0.069

Leishmania.major 0.700 0.315 0.011
Drosophila.melanogaster 0.625 0.446 0.004
DanioRerio 0.545 0.330 0.016
ZeaMays 0.683 0.583 0.073
OryzaSativa 0.663 0.541 0.085

Bacillus.subtilis 0.351 0.444 0.048
MusMusculus 0.632 0.404 0.002
Homo.Sapiens 0.680 0.572 0.100
Arabidopsis.Thaliana 0.403 0.197 0.172
MEAN 0.505 0.357 0.089
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Lastly, the distributions of the code coverage results considering every sequences for all the model

genomes are displayed through boxplots in Figure 25. For space reasons, only the results for the

overall best (173) and worst (192) code are presented. In Appendix B it is possible to find the

distributions of the code coverage results considering all the 27 best and worst code groups for the

six model genomes (Figure 32).

Figure 25: Distributions of coverages of best (173, in blue) and worst (192, in red) codes computed considering
every sequence - model genomes.

Studying the distributions in Figures 25 and 32, it is clear that the coverage of the best codes

is systematically and significantly higher than the one of the worst codons, for all the genomes

under analysis. Looking at Figure 32, however, it can be seen that the difference between the

best and worst codes coverages becomes gradually less marked as the importance of the pair of

codes under investigation decreases (i.e. when scrolling down the first and last columns of Table

1). Nevertheless, this particular behaviour is due to the fact that different pairs of code groups

correspond to different overall values for coverage. In fact, if we investigate the distributions of

the weighted percentage differences between the best and worst codes (shown in Figures 33 and

34 in Appendix B) we can see that they are all very similar for the same genome regardless of

which pair of groups is considered. The weighted percentage differences in Figure 33 and 34 were
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calculated considering the difference
𝐶𝑏 − 𝐶𝑤

𝐶𝑏
× 100

for every sequence in the model genomes.

The two figures present the same results but in a different order. Figure 33, in fact, presents 27

blocks of 6 boxplots, which correspond to the distributions of the differences in the model genomes

considering the 27 best and worst code pairs. Figure 34, on the other hand, consists of 6 blocks

of 27 boxplots, which correspond to the distributions of the 27 best and worst code pairs (sorted

according to importance, i.e. by scrolling down from the top to the bottom of the first and last

columns of Table 1) grouped by model genome.
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3.5 Sequence length effect

The above findings, especially those obtained considering the rolling means approach, lead us

to think that there might be a relationship between the code coverage and the length of the

sequence. Considering the code coverages of all the individual sequences, it is easy to calculate

the correlation between these quantities for the different codes and the sequence lengths. Table

16 shows the Spearman’s rank correlation coefficients between the coverage for the three best and

worst groups calculated on the individual sequences with the length of the latter, with reference to

the model genomes. Although these values tend to be low (often very close to zero), it is interesting

to note that very similar results are obtained when considering the best and worst groups for the

same genome. This might suggest that there is indeed a relationship between the sequence length

effect and the circular code groups under analysis. In particular, among the organisms taken as a

model, Plasmodiumfalciparum3D7 shows more extreme results (positive and negative correlations

of around 0.39 in absolute value). Figures 26 and 27 shows a graphic representation of the length

effect, based on the results obtained for this genome. The curve across the points in Figure 26 was

calculated using the LOESS (locally estimated scatterplot smoothing) method, a local regression

that combines the simplicity of linear least squares with the flexibility of non-linear regression. In

Figure 27, on the other hand, since the relationship between the variables seems decidedly less

complex, the function through the points of the scatterplot has been calculated using a simple

linear regression.

As can be seen from Figure 26, the relationship between sequence length and code coverage is

asymmetrical and non-linear. This is the reason why the correlations in Table 16 have been

calculated considering Spearman’s rank correlation coefficient, which is useful to study monotonic

relationships (whether linear or not).
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Table 16: Spearman’s rank correlation cofficients between code coverage on every sequence of the first three pairs
of best and worst codes and length of the sequence - model genomes.

Best codes Worst codes

173 23 98 192 87 53

AeropyrumPernix 0.051 0.090 0.075 0.009 0.012 0.056
Helicobacter.pylori 0.090 0.108 0.063 -0.057 -0.060 -0.051
Escherichia.coli 0.154 0.166 0.145 -0.144 -0.107 -0.088
Plasmodiumfalciparum3D7 0.385 0.386 0.391 -0.352 -0.391 -0.311
Drosophila.melanogaster -0.150 -0.148 -0.133 0.193 0.210 0.205
Homo.Sapiens 0.077 0.101 0.073 -0.084 -0.064 -0.092

Figure 26: Relationship between coverage on every sequence of best (173) and worst (192) codes and length of the
sequence. In blue the LOESS regression curve. - Plasmodiumfalciparum3D7

Looking at the scatterplots in Figure 26, a complex asymmetric dependency can be observed. The

results for code coverage, in fact, tend to stabilise in a higher (for 173) and lower (for 192) range as

the sequence length increases. Figure 27 shows scatterplots of the coverage of codons 173 and 192

using the base 10 logarithm of the sequence length for the Plasmodiumfalciparum3D7. From the

graphs in the figure, the positive and negative effect of sequence length can be seen more clearly.
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Figure 27: Relationship between coverage on every sequence of best (173) and worst (192) codes and logarithm of
sequence length. In blue the simple linear regression curve. - Plasmodiumfalciparum3D7

Figures 42 and 43 in Appendix B show the scatterplots considering the actual sequence length

and the sequence length to which the base-10 logarithm transformation was applied for all model

genomes. It can be seen, therefore, that the above considerations also apply to all model genomes

and that, consequently, it is possible to assume the existence of a sequence length effect as a

universal property. In addition, the reasons for these particular results can be extracted from

biological theory. In fact, it can be assumed that longer sequences have more need to be optimised,

i.e. to contain codons whose synthesis is faster (present in the best code groups), in order to avoid

slowing down during protein synthesis.

Thus, it would not be inaccurate to assume that codon usage and, consequently, code coverage

values differ when considering long and short sequences (in terms of codon number). This suggests

an internal separation of the individual sequences available for each genome, taking 1000 as the

threshold value for length. Table 17 shows the different sizes of the two groups. Obviously, the sum

of the sizes of the two subgroups corresponds to the total number of sequences in each genome,

shown in the third column of Table 3.
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Table 17: Number of sequences longer and shorter than 1000 codons - model genomes.

> 1000 < 1000 Sum

AeropyrumPernix 286 427 713
Helicobacter.pylori 1,040 1,352 2,392
Escherichia.coli 1,568 2,415 3,983
Plasmodiumfalciparum3D7 3,525 1,734 5,259
Drosophila.melanogaster 8,590 4,016 12,606
Homo.Sapiens 73,856 66,594 140,450

Table 18, therefore, shows the values for code usage for the best (173) and worst (192) code

in general obtained considering all sequences, the only sequences longer than 1000 codons and

the only sequences shorter than 1000 codons, plus the difference between the latter two values.

Observing the table, it can be seen that the overall value is always within the range limited by the

results obtained on the long and short sequences only. This is consistent with the fact that the

global value can be considered effectively as a weighted mean of the other two values (weighing

for the different numerosities of the subgroups of long and short sequences). Studying the values

of the differences, moreover, it is possible to note that in many cases they are not negligible at

all. It can be assumed, therefore, that the results for codon usage and code usage are somehow

related to the length of the sequences being examined, thus, that an actual sequence length effect

may exists.

Table 18: Comparison of code coverage results for best (173) and worst (192) codes considering the sequences split
according to their length - model genomes.

Best code - 173 Worst code - 192

Global > 1000 < 1000 Δ Global > 1000 < 1000 Δ
AeropyrumPernix 46.69 46.64 46.77 -0.13 13.69 13.97 13.27 0.70
Helicobacter.pylori 38.49 38.87 37.72 1.15 15.34 15.15 15.72 -0.57
Escherichia.coli 46.34 46.88 45.39 1.48 17.36 16.93 18.14 -1.21
Plasmodiumfalciparum3D7 38.92 39.30 34.83 4.47 21.19 20.88 24.44 -3.56
Drosophila.melanogaster 46.10 45.93 47.89 -1.97 20.74 20.91 19.01 1.90
Homo.Sapiens 44.17 44.18 44.15 0.03 21.32 21.25 21.56 -0.31

This separation also allows a new interpretation of the results obtained with the rolling means

approach. Figures 28 and 29, in fact, are equivalent to those in the previous Figures 15 and 16,
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with the difference that in this case the two red and blue lines now refer to the results obtained

by considering long and short sequences respectively.

Figure 28: Coverages of the best code (173) calculated using the rolling means approach: cut (light green box) vs
entire (dark green box) sequences. The benchmarks this time are the values for global code coverage considering
the group of sequences longer than 1000 codons (in red) and the group of sequences shorter than 1000 codons (in
blue) - AeropyrumPernix, Helicobacter.pylori and Escherichia.coli.

Figure 29: Coverages of the best code (173) calculated using the rolling means approach: cut (light green box) vs
entire (dark green box) sequences. The benchmarks this time are the values for global code coverage considering
the group of sequences longer than 1000 codons (in red) and the group of sequences shorter than 1000 codons (in
blue) - Plasmodiumfalciparum3D7, Drosophila.melanogaster and Homo.Sapiens.

It is clear from the graphs that the results calculated on the long sequences only (red line) are sys-

tematically and often significantly closer to the values on which the distributions tend to stabilise.
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This, therefore, leads us to understand that the distance between the results obtained with this

approach and those on the whole genome (taken as a reference previously) is actually due to the

fact that in the rolling means approach we select only the sequences with at least 1000 codons, as

hypothesised in the relative paragraph. It is also legitimate to think that the distance that is still

recorded between the values on which the distributions tend to stabilise and the code coverage on

the long sequences only is due to the fact that in the rolling means approach we consider only the

first 1000 codons of the long sequences, which introduces a further bias.
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3.6 Transient effect in the first positions of the sequences

In this section the results for code coverage considering the positional approach are pre-

sented and discussed.

Figures 30 and 44 (in Appendix B) offer a visual summary of the results obtained by calculating

the code coverage by position. In particular, the figures present the trend of the results for the

best (173) and worst (192) code coverage. The limits on the x-axis are, therefore, position 1 and

the length of the longest sequence in the genome under consideration. The results for position

0 have been deliberately removed, as the first codon in each sequence is always the start codon

(ATG) which is not part of any code. It is useful to note that these analyses were carried out on

entire sequences, so that it is possible to study whether there are particular patterns in the early

part of the sequences.

Figure 44 shows the results for the whole range taken into consideration. In Figure 30, instead,

the code coverage on the first 50 codons can be observed in detail and compared with the results

for code coverage obtained considering the whole genome (without the initial and final part of the

sequences).
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Figure 30: Coverages of the codes 173 (in green) and 192 (in red) by position, focus on the first 50 positions only.
The coverage values obtained by considering the whole genome for code 173 (blue line) and 192 (dark red line) are
also shown - model genomes.

Figures 37 to 41 (in Appendix B), in addition, show the results for the coverage of all 27 best

and worst groups for the first 50 codons for five model genomes.

Several general observations can be drawn:

• from the graphs over the whole range, it can be seen that the results become extremely

variable as the position taken into consideration increases. This particular behaviour is due

to the fact that as the position increases, the amount of sequences in the genome with at

least that number of codons decreases. This means that there are fewer observations on

which to calculate the average, hence more variable results. Towards the last positions, in

fact, the results are only 0 or 1, as they are calculated on a single sequence (the longest in

the genome).

• Although when the variability increases the results tend to overlap, it can be observed that

the coverage of code 173 tends to be higher than that of code 192.
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• Looking at the trend in the top 50 positions and the overall value of the whole genome,

an effect is quite clear. In fact, it can be observed that the results tend to stabilise on the

benchmark value only after the first positions, both for the best and the worst code. In

particular, at the beginning of the sequences the coverage of 173 tends to be lower than the

global value, while that of 192 is higher. This particular behaviour confirms the conclusions

reached by analysing the results in the previous paragraphs: in the first positions of the

sequences the codons that are part of the best and worst code are respectively less and more

frequent than they are in the whole sequences.

• Results obtained on larger genomes, i.e. with more sequences, tend to be generally less

variable. The coverage on the first 50 codons of AeropyrumPernix, for example, is much

less stable than that of Homo.Sapiens. This is due to the fact that we average over larger

sequence samples.

• In general, the values on which the results tend to stabilise are very close to the results

obtained considering the whole genome. This suggests a consistency between the results for

code coverage obtained by the different approaches under analysis.

Circular Codes, Reading Frames And Error Correction In Translation 60



3.7 Evidence of a non-random relationship between the coverage of best and worst codes 3

3.7 Evidence of a non-random relationship between the coverage of

best and worst codes

Figure 31 contains the results of the bootstrap test previously presented for all 16 best and worst

disjoint code pairs and all 24 organisms under analysis.

It is useful to recall the hypotheses of the test:

⎧{
⎨{⎩

𝐻0 ∶ 𝐶𝑤 compatible with 𝐶𝑅𝐴𝑁 ⟹ relationship due to chance

𝐻1 ∶ 𝐶𝑤 not compatible with 𝐶𝑅𝐴𝑁 ⟹ relationship not due to chance

where 𝐶𝑤 is the coverage of the worst code and 𝐶𝑅𝐴𝑁 is the random variable representing the

coverage of a random set of 20 codons taken from the subset of 44 codons complementary to the

ones in the best code. In addition, it is worth mentioning for this test we derive the bootstrap

rejection bands at a significance level 0.0001 by generating 10,000 bootstrap resamples.

Figure 31 shows 16 different graphs for all the best and worst disjoint code pairs. For each graph,

it is possible to observe the non-rejection region (in green), that is the zone in which the code

coverage would be considered compatible with that of the simulated random sets. The limits of

this area correspond to the quantiles 0.0001 and 0.9999, output of the codtest function. If the

coverage of a code lies within the non-rejection region, then it is not possible to reject the null

hypothesis 𝐻0 that the relation linking it to the best code is simply due to chance. In each graph

it is possible to observe the results of the coverage of the worst code (in red) and of the remainder

code (in blue) obtained considering the whole genome (in particular, considering the cut sequences,

taking into account the fact that the differences with the results considering the entire sequences

are almost zero). The test was performed on all the genomes under analysis, present on the x-axis.

Looking at the graphs in Figure 31, we can conclude that almost all the coverages of the worst

codes lie below the non-rejection zone. It is possible, therefore, to reject with a 99.99% confidence

in almost all cases the hypothesis that the fact of the marked difference between the coverage of

the best and worst codes is simply due to chance.

Furthermore, it can be observed that the coverage for the remainder code always lies in the non-

rejection region. When considering the remainder codes, therefore, we do not reject the null
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3.7 Evidence of a non-random relationship between the coverage of best and worst codes 3

hypothesis that the relationship with the best code is random. This puts even more emphasis on

the previous result. It can, therefore, be concluded that the codes that correspond to the Keto-

Amino transformation of the best codes are highly selected to be, indeed, the worst codes.

This conclusive result, together with the various consistent observations made in the previous

paragraphs, provides significant evidence that there is a clear connection between the theory of

circular codes and the translation process.

Figure 31: Bootstrap test results for the 16 disjoint pairs of best and worst codes and all the 24 genomes under
analysis, with 10000 bootstrap replications and 𝛼 = 0.0001. In every plot are displayed the bootstrap rejection
bands under the null hypothesis at 𝛼 = 0.0001 that the relation is produced by chance (in green) and the results
of the coverage of the worst (in red) and the remainder (in blue) codes.
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4 Conclusion

The results presented and described in the previous chapter provide veracity to the observations

from which this study was based. With regard to the different behaviour at the ends of the

sequences, in fact, all the results lead to the conclusion that the codons in the 27 best codes tend

to be less present at the beginning and at the end of the sequences, in favour of those that are

contained in the the worst codes. This conclusion, in fact, can be drawn both by considering the

different values of codon usage and code coverage calculated on the whole genome taking into

account the whole and cut sequences, and by observing the distribution of the code coverage by

position in the first positions. These results, therefore, suggest the existence of a transient effect

in the first 10-15 positions, implying lower values for the best codes coverage and higher values for

the worst codes coverage compared to those recorded in the elongation phase. This observation is

consistent with previous studies (Boël et al. 2016) and also allows a biological interpretation. It is

reasonable to assume that the role played by circular codes affects the central parts of the sequences,

i.e. the elongation phase. This is consistent with the fact that there are other predominant factors

acting at the beginning of the sequence and connected to the initiation phase, so that circular

codes and optimization for speed are not needed.

Also when considering the relationship linking the best codes to those on which the Keto-Amino

transformation is applied (the worst codes), the results lead to an explicit conclusion in line with

previous studies. In fact, regardless of the different calculation approach adopted, the code coverage

of the best codes is always significantly higher than that of the worst codes. In particular, it was

also seen that the coverage of the best and worst groups are correlated: as one increases, the other

tends to decrease. The bootstrap test proved that this particular relationship is not due to chance,

but implies a systematic codon separation. It is reasonable to conclude, therefore, that there is

a connection between the theory of circular codes and the dynamics underlying the translation

process. This relationship leads to the identification of two classes of codes, best and worst, that

are optimised to contain codons that ensure a respectively higher and lower efficiency of the entire

translation process. It is useful to recall that these observations are universal both in terms

of genomes, i.e. they are common to all 24 genomes under analysis, and in terms of equivalence

classes, i.e. they are valid for all 27 best and worst code pairs in each class.
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4 CONCLUSION

Finally, the code coverage calculated on the individual sequences made it possible to study and

recognise a new result. In fact, it was seen that there is a correlation between the length of the

sequences under examination and the code coverage of the best and worst groups. In particular, it

was observed that beyond a certain threshold for the sequence length, the results tend to stabilise

on higher values for the best codes and lower values for the worst codes. It is therefore possible to

define a sequence length effect. A biological interpretation is also possible here. It can be assumed

that longer sequences, the translation of which is longer and more likely to be problematic by

construction, have a greater need to be composed of more efficient codons, i.e. those contained

in the best codes. In contrast, shorter sequences do not have this particular requirement. This

interesting result deserves further investigation and could lay the foundations for future studies

related to this topic.
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6 Appendix

This chapter is divided into 3 sub-chapters: Appendix A contains the additional tables, Appendix

B the additional figures and Appendix C some of the code used for the analyses.

6.1 Appendix A: additional tables

For reasons of space, the captions of the tables are not as informative as those in the previous

chapters. For a better understanding, please refer to the part of the Results where the values in

the tables are discussed.

In Tables 22, 23 and 24, organisms are ordered as in the first column of Table 3. The names of the

genomes have been replaced by letters for space reasons. Columns with bold values refer to model

genomes.
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Table 19: Different values in codon usage (x100) between entire and cut sequences - ’model’ genomes

A.Pernix H.pylori E.coli Plasmodium D.melanogaster H.Sapiens

E C Δ E C Δ E C Δ E C Δ E C Δ E C Δ
AAA 0.86 0.83 0.03 6.68 6.57 0.11 3.41 3.32 0.09 9.55 9.57 -0.02 1.75 1.72 0.03 1.48 1.49 -0.01
AAC 1.76 1.82 -0.06 2.54 2.59 -0.05 2.18 2.20 -0.02 2.00 2.00 0.00 2.63 2.64 -0.01 1.99 2.01 -0.02
AAG 3.72 3.75 -0.03 2.05 2.02 0.03 1.10 1.05 0.05 2.15 2.13 0.02 3.88 3.88 0.00 3.21 3.23 -0.02
AAT 0.41 0.42 -0.01 3.27 3.29 -0.02 1.90 1.89 0.01 12.35 12.51 -0.16 2.18 2.18 0.00 1.48 1.50 -0.02
ACA 1.05 1.02 0.03 0.66 0.65 0.01 0.80 0.76 0.04 2.17 2.18 -0.01 1.22 1.22 0.00 1.12 1.13 -0.01
ACC 1.44 1.49 -0.05 1.43 1.46 -0.03 2.28 2.33 -0.05 0.48 0.48 0.00 2.13 2.15 -0.02 1.55 1.55 0.00
ACG 1.13 1.17 -0.04 1.01 1.03 -0.02 1.49 1.51 -0.02 0.38 0.38 0.00 1.40 1.40 0.00 1.20 1.19 0.01
ACT 0.87 0.89 -0.02 1.36 1.38 -0.02 0.90 0.89 0.01 1.06 1.06 0.00 1.11 1.12 -0.01 1.02 1.03 -0.01
AGA 1.04 1.01 0.03 0.86 0.84 0.02 0.28 0.25 0.03 1.60 1.59 0.01 0.55 0.54 0.01 0.97 0.96 0.01
AGC 2.50 2.55 -0.05 2.74 2.80 -0.06 1.59 1.61 -0.02 0.39 0.39 0.00 2.00 2.00 0.00 1.66 1.65 0.01
AGG 4.99 4.97 0.02 0.85 0.85 0.00 0.18 0.16 0.02 0.43 0.43 0.00 0.61 0.61 0.00 1.57 1.56 0.01
AGT 0.54 0.51 0.03 0.98 0.97 0.01 0.93 0.92 0.01 2.04 2.05 -0.01 1.19 1.19 0.00 0.84 0.84 0.00
ATA 4.14 4.19 -0.05 0.87 0.85 0.02 0.54 0.51 0.03 5.02 5.03 -0.01 0.99 0.98 0.01 0.88 0.90 -0.02
ATC 1.04 1.05 -0.01 2.82 2.86 -0.04 2.39 2.42 -0.03 0.63 0.63 0.00 2.17 2.19 -0.02 2.09 2.12 -0.03
ATG 2.41 2.15 0.26 2.29 2.05 0.24 2.73 2.47 0.26 2.19 2.07 0.12 2.16 2.03 0.13 2.42 2.20 0.22
ATT 0.86 0.85 0.01 3.52 3.51 0.01 2.95 2.94 0.01 3.60 3.61 -0.01 1.74 1.74 0.00 1.42 1.45 -0.03
CAA 0.23 0.22 0.01 3.10 3.11 -0.01 1.45 1.42 0.03 2.39 2.40 -0.01 1.72 1.73 -0.01 1.23 1.24 -0.01
CAC 1.14 1.18 -0.04 0.66 0.67 -0.01 0.94 0.94 0.00 0.35 0.34 0.01 1.53 1.54 -0.01 1.38 1.39 -0.01
CAG 1.68 1.67 0.01 0.56 0.57 -0.01 2.97 3.01 -0.04 0.37 0.37 0.00 3.58 3.61 -0.03 2.10 2.12 -0.02
CAT 0.43 0.43 0.00 1.45 1.46 -0.01 1.28 1.28 0.00 2.07 2.09 -0.02 1.06 1.07 -0.01 1.06 1.07 -0.01
CCA 0.74 0.71 0.03 0.49 0.48 0.01 0.83 0.83 0.00 0.90 0.91 -0.01 1.52 1.53 -0.01 1.35 1.35 0.00
CCC 1.96 1.96 0.00 0.88 0.90 -0.02 0.55 0.54 0.01 0.21 0.20 0.01 1.87 1.89 -0.02 1.18 1.17 0.01
CCG 1.21 1.22 -0.01 0.34 0.35 -0.01 2.28 2.34 -0.06 0.10 0.09 0.01 1.55 1.56 -0.01 1.83 1.81 0.02
CCT 1.06 1.04 0.02 1.63 1.67 -0.04 0.72 0.72 0.00 0.78 0.79 -0.01 0.83 0.84 -0.01 1.27 1.28 -0.01
CGA 0.11 0.10 0.01 0.25 0.24 0.01 0.38 0.36 0.02 0.24 0.24 0.00 0.86 0.86 0.00 0.55 0.55 0.00
CGC 0.34 0.34 0.00 0.84 0.85 -0.01 2.09 2.12 -0.03 0.04 0.04 0.00 1.73 1.73 0.00 1.59 1.59 0.00
CGG 0.41 0.40 0.01 0.10 0.11 -0.01 0.62 0.62 0.00 0.03 0.03 0.00 0.76 0.76 0.00 1.28 1.27 0.01
CGT 0.26 0.26 0.00 0.48 0.47 0.01 2.04 2.06 -0.02 0.30 0.30 0.00 0.90 0.90 0.00 0.64 0.65 -0.01
CTA 2.01 2.02 -0.01 0.80 0.79 0.01 0.38 0.38 0.00 0.61 0.60 0.01 0.81 0.81 0.00 0.74 0.75 -0.01
CTC 3.38 3.38 0.00 1.00 1.00 0.00 1.04 1.04 0.00 0.18 0.17 0.01 1.28 1.28 0.00 2.79 2.79 0.00
CTG 2.82 2.82 0.00 0.43 0.44 -0.01 5.15 5.24 -0.09 0.15 0.14 0.01 3.53 3.54 -0.01 2.24 2.25 -0.01
CTT 1.61 1.62 -0.01 1.60 1.59 0.01 1.13 1.11 0.02 0.87 0.86 0.01 0.92 0.92 0.00 1.52 1.54 -0.02
GAA 1.12 1.10 0.02 5.07 5.10 -0.03 3.95 4.00 -0.05 6.09 6.14 -0.05 2.41 2.42 -0.01 1.99 2.02 -0.03
GAC 2.95 3.02 -0.07 1.36 1.39 -0.03 1.94 1.98 -0.04 0.87 0.87 0.00 2.40 2.41 -0.01 2.92 2.96 -0.04
GAG 6.15 6.19 -0.04 1.81 1.83 -0.02 1.89 1.90 -0.01 1.03 1.03 0.00 4.21 4.25 -0.04 3.81 3.83 -0.02
GAT 1.43 1.43 0.00 3.41 3.47 -0.06 3.29 3.36 -0.07 5.59 5.65 -0.06 2.80 2.81 -0.01 2.41 2.45 -0.04
GCA 1.50 1.53 -0.03 0.68 0.67 0.01 2.08 2.07 0.01 0.84 0.83 0.01 1.30 1.29 0.01 1.67 1.67 0.00
GCC 3.62 3.71 -0.09 1.47 1.51 -0.04 2.54 2.60 -0.06 0.21 0.21 0.00 3.18 3.20 -0.02 3.17 3.14 0.03
GCG 1.97 2.01 -0.04 2.11 2.16 -0.05 3.24 3.31 -0.07 0.11 0.11 0.00 1.29 1.28 0.01 2.77 2.69 0.08
GCT 2.38 2.40 -0.02 2.67 2.71 -0.04 1.53 1.54 -0.01 0.82 0.82 0.00 1.49 1.49 0.00 1.87 1.87 0.00
GGA 1.29 1.27 0.02 0.58 0.58 0.00 0.88 0.88 0.00 1.24 1.25 -0.01 1.85 1.87 -0.02 1.51 1.52 -0.01
GGC 3.40 3.41 -0.01 2.12 2.19 -0.07 2.82 2.90 -0.08 0.13 0.13 0.00 2.47 2.48 -0.01 3.09 3.10 -0.01
GGG 2.37 2.37 0.00 2.23 2.29 -0.06 1.18 1.20 -0.02 0.28 0.28 0.00 0.45 0.44 0.01 1.72 1.72 0.00
GGT 1.63 1.56 0.07 0.99 1.00 -0.01 2.45 2.52 -0.07 1.18 1.19 -0.01 1.33 1.35 -0.02 1.45 1.46 -0.01
GTA 1.50 1.50 0.00 0.60 0.59 0.01 1.09 1.08 0.01 1.56 1.57 -0.01 0.70 0.70 0.00 0.65 0.66 -0.01
GTC 2.33 2.37 -0.04 0.81 0.83 -0.02 1.47 1.49 -0.02 0.24 0.24 0.00 1.35 1.36 -0.01 2.10 2.12 -0.02
GTG 3.13 3.18 -0.05 2.80 2.87 -0.07 2.58 2.65 -0.07 0.48 0.48 0.00 2.66 2.68 -0.02 2.56 2.57 -0.01
GTT 2.44 2.42 0.02 1.52 1.50 0.02 1.80 1.80 0.00 1.52 1.52 0.00 1.24 1.25 -0.01 1.52 1.55 -0.03
TAA 0.06 0.00 0.06 0.16 0.00 0.16 0.18 0.00 0.18 0.10 0.01 0.09 0.06 0.00 0.06 0.06 0.00 0.06
TAC 2.46 2.55 -0.09 1.11 1.13 -0.02 1.24 1.26 -0.02 0.62 0.61 0.01 1.77 1.78 -0.01 1.65 1.69 -0.04
TAG 0.19 0.00 0.19 0.04 0.00 0.04 0.02 0.00 0.02 0.02 0.00 0.02 0.05 0.00 0.05 0.07 0.00 0.07
TAT 1.10 1.12 -0.02 2.47 2.48 -0.01 1.67 1.69 -0.02 5.07 5.10 -0.03 1.07 1.07 0.00 0.97 0.99 -0.02
TCA 0.51 0.51 0.00 0.58 0.57 0.01 0.82 0.80 0.02 1.66 1.66 0.00 0.89 0.89 0.00 1.21 1.22 -0.01
TCC 1.01 1.03 -0.02 0.57 0.57 0.00 0.90 0.90 0.00 0.51 0.51 0.00 1.95 1.96 -0.01 1.70 1.68 0.02
TCG 0.70 0.69 0.01 0.37 0.37 0.00 0.88 0.89 -0.01 0.30 0.30 0.00 1.64 1.64 0.00 1.28 1.26 0.02
TCT 0.64 0.63 0.01 1.56 1.56 0.00 0.87 0.87 0.00 1.47 1.48 -0.01 0.81 0.81 0.00 1.20 1.20 0.00
TGA 0.06 0.00 0.06 0.08 0.00 0.08 0.10 0.00 0.10 0.03 0.01 0.02 0.04 0.00 0.04 0.11 0.00 0.11
TGC 0.42 0.42 0.00 0.72 0.73 -0.01 0.62 0.63 -0.01 0.23 0.23 0.00 1.38 1.39 -0.01 1.28 1.28 0.00
TGG 1.23 1.20 0.03 0.68 0.67 0.01 1.53 1.54 -0.01 0.50 0.49 0.01 0.94 0.93 0.01 1.35 1.36 -0.01
TGT 0.14 0.13 0.01 0.35 0.34 0.01 0.51 0.51 0.00 1.54 1.55 -0.01 0.67 0.67 0.00 0.57 0.58 -0.01
TTA 0.41 0.41 0.00 4.29 4.26 0.03 1.35 1.31 0.04 4.72 4.73 -0.01 0.50 0.49 0.01 0.59 0.60 -0.01
TTC 2.55 2.62 -0.07 1.15 1.16 -0.01 1.60 1.62 -0.02 0.72 0.70 0.02 2.04 2.04 0.00 2.43 2.46 -0.03
TTG 0.59 0.57 0.02 3.00 3.01 -0.01 1.28 1.27 0.01 1.05 1.04 0.01 1.59 1.59 0.00 1.42 1.42 0.00
TTT 0.61 0.61 0.00 4.09 4.04 0.05 2.20 2.20 0.00 3.64 3.61 0.03 1.29 1.28 0.01 1.27 1.29 -0.02
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Table 20: R-squared of quadratic regression - codes 23 and 87

23-87 23-rem 87-rem

AeropyrumPernix 0.370 0.248 0.171
Thermoplasma.acidophilum 0.453 0.210 0.128
P.Horikoshii 0.583 0.096 0.250
Pyrococcus 0.362 0.267 0.140
Staphylococcus.aureus 0.264 0.409 0.116

Helicobacter.pylori 0.209 0.496 0.101
Methanosarcina 0.412 0.438 0.031
Archaeoglobus 0.335 0.362 0.127
Escherichia.coli 0.595 0.472 0.008
Streptomyces.coelicolorA3 0.598 0.650 0.057

M.Xanthus 0.506 0.495 0.001
Caenorhabditis.elegans 0.592 0.229 0.158
Sulfolobus.solfataricus 0.434 0.143 0.203
Schizosaccharomyces.Pombe 0.559 0.258 0.061
Plasmodiumfalciparum3D7 0.373 0.309 0.126

Leishmania.major 0.634 0.261 0.023
Drosophila.melanogaster 0.617 0.376 0.002
DanioRerio 0.561 0.331 0.014
ZeaMays 0.701 0.395 0.011
OryzaSativa 0.655 0.382 0.024

Bacillus.subtilis 0.375 0.385 0.060
MusMusculus 0.589 0.349 0.005
Homo.Sapiens 0.676 0.392 0.025
Arabidopsis.Thaliana 0.370 0.229 0.168
MEAN 0.493 0.341 0.084
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Table 21: R-squared of quadratic regression - codes 98 and 53

98-53 98-rem 53-rem

AeropyrumPernix 0.388 0.342 0.099
Thermoplasma.acidophilum 0.351 0.269 0.149
P.Horikoshii 0.560 0.080 0.351
Pyrococcus 0.366 0.226 0.174
Staphylococcus.aureus 0.357 0.227 0.177

Helicobacter.pylori 0.248 0.522 0.059
Methanosarcina 0.287 0.347 0.141
Archaeoglobus 0.288 0.297 0.177
Escherichia.coli 0.465 0.394 0.022
Streptomyces.coelicolorA3 0.499 0.569 0.009

M.Xanthus 0.503 0.522 0.014
Caenorhabditis.elegans 0.563 0.238 0.050
Sulfolobus.solfataricus 0.490 0.160 0.149
Schizosaccharomyces.Pombe 0.404 0.187 0.194
Plasmodiumfalciparum3D7 0.491 0.237 0.102

Leishmania.major 0.631 0.225 0.051
Drosophila.melanogaster 0.567 0.406 0.006
DanioRerio 0.496 0.336 0.031
ZeaMays 0.638 0.561 0.050
OryzaSativa 0.610 0.506 0.062

Bacillus.subtilis 0.340 0.422 0.060
MusMusculus 0.570 0.433 0.003
Homo.Sapiens 0.627 0.531 0.065
Arabidopsis.Thaliana 0.371 0.198 0.197
MEAN 0.463 0.343 0.100
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Table 22: Difference in code coverages (x100) between entire and cut sequences (entire - cut), best 27 code groups - all genomes

A B C D E F G H I J K L M N O P Q R S T U V W X

173 -0.56 -0.40 -0.44 -0.37 -0.32 -0.46 -0.50 -0.51 -0.61 -1.02 -0.74 -0.15 -0.30 -0.20 -0.22 -0.27 -0.21 -0.35 -0.48 -0.35 -0.58 -0.32 -0.38 -0.26
23 -0.43 -0.39 -0.47 -0.41 -0.43 -0.41 -0.53 -0.51 -0.64 -0.93 -0.58 -0.14 -0.33 -0.24 -0.23 -0.24 -0.22 -0.35 -0.46 -0.35 -0.58 -0.31 -0.38 -0.26
98 -0.48 -0.30 -0.31 -0.28 -0.29 -0.45 -0.40 -0.35 -0.55 -0.99 -0.71 -0.14 -0.24 -0.19 -0.21 -0.26 -0.20 -0.33 -0.44 -0.34 -0.51 -0.30 -0.35 -0.24
25 -0.47 -0.32 -0.38 -0.33 -0.32 -0.46 -0.46 -0.46 -0.57 -0.94 -0.67 -0.14 -0.27 -0.19 -0.24 -0.26 -0.21 -0.34 -0.45 -0.34 -0.55 -0.31 -0.36 -0.25
20 -0.34 -0.31 -0.41 -0.36 -0.43 -0.41 -0.49 -0.46 -0.61 -0.85 -0.52 -0.14 -0.29 -0.23 -0.26 -0.23 -0.21 -0.34 -0.43 -0.34 -0.55 -0.29 -0.36 -0.25

166 -0.55 -0.42 -0.34 -0.25 -0.23 -0.39 -0.50 -0.49 -0.48 -0.96 -0.67 -0.12 -0.25 -0.17 -0.15 -0.23 -0.19 -0.33 -0.43 -0.34 -0.52 -0.30 -0.36 -0.25
4 -0.42 -0.41 -0.37 -0.28 -0.34 -0.34 -0.52 -0.49 -0.51 -0.87 -0.51 -0.12 -0.27 -0.21 -0.17 -0.20 -0.20 -0.32 -0.41 -0.34 -0.52 -0.28 -0.36 -0.25
30 -0.36 -0.36 -0.37 -0.34 -0.17 -0.22 -0.39 -0.39 -0.44 -0.93 -0.58 -0.03 -0.13 -0.10 0.02 -0.21 -0.15 -0.23 -0.35 -0.25 -0.34 -0.21 -0.28 -0.14
117 -0.46 -0.34 -0.27 -0.20 -0.23 -0.39 -0.45 -0.44 -0.44 -0.88 -0.60 -0.12 -0.21 -0.17 -0.18 -0.22 -0.19 -0.32 -0.40 -0.33 -0.50 -0.28 -0.34 -0.23
111 -0.33 -0.33 -0.31 -0.24 -0.34 -0.34 -0.48 -0.44 -0.47 -0.79 -0.45 -0.12 -0.24 -0.21 -0.19 -0.19 -0.20 -0.31 -0.38 -0.33 -0.50 -0.26 -0.34 -0.23

22 -0.39 -0.39 -0.52 -0.49 -0.45 -0.39 -0.55 -0.46 -0.63 -0.75 -0.45 -0.19 -0.37 -0.23 -0.24 -0.20 -0.20 -0.32 -0.40 -0.31 -0.57 -0.29 -0.34 -0.26
172 -0.63 -0.38 -0.47 -0.43 -0.36 -0.55 -0.51 -0.61 -0.49 -0.78 -0.55 -0.14 -0.37 -0.20 -0.22 -0.23 -0.18 -0.28 -0.44 -0.32 -0.56 -0.30 -0.35 -0.25
21 -0.50 -0.37 -0.51 -0.46 -0.47 -0.51 -0.53 -0.61 -0.53 -0.69 -0.40 -0.14 -0.40 -0.24 -0.23 -0.21 -0.18 -0.28 -0.42 -0.32 -0.56 -0.28 -0.35 -0.25
24 -0.53 -0.30 -0.41 -0.38 -0.36 -0.55 -0.46 -0.56 -0.46 -0.70 -0.48 -0.14 -0.34 -0.20 -0.24 -0.22 -0.18 -0.27 -0.41 -0.31 -0.53 -0.28 -0.33 -0.23
97 -0.55 -0.27 -0.35 -0.33 -0.33 -0.55 -0.40 -0.45 -0.43 -0.75 -0.53 -0.13 -0.31 -0.20 -0.22 -0.22 -0.17 -0.26 -0.40 -0.31 -0.49 -0.28 -0.31 -0.23

171 -0.41 -0.29 -0.45 -0.41 -0.48 -0.50 -0.49 -0.56 -0.49 -0.61 -0.33 -0.14 -0.36 -0.24 -0.26 -0.20 -0.18 -0.27 -0.39 -0.31 -0.53 -0.26 -0.33 -0.23
3 -0.49 -0.38 -0.41 -0.34 -0.39 -0.43 -0.52 -0.59 -0.40 -0.63 -0.32 -0.12 -0.34 -0.22 -0.17 -0.17 -0.16 -0.25 -0.37 -0.31 -0.50 -0.25 -0.33 -0.23
165 -0.62 -0.39 -0.37 -0.30 -0.28 -0.48 -0.50 -0.59 -0.36 -0.72 -0.48 -0.12 -0.32 -0.18 -0.16 -0.19 -0.16 -0.26 -0.39 -0.31 -0.50 -0.27 -0.33 -0.23
26 -0.58 -0.37 -0.52 -0.51 -0.39 -0.53 -0.52 -0.56 -0.48 -0.60 -0.42 -0.19 -0.42 -0.20 -0.23 -0.18 -0.17 -0.26 -0.38 -0.28 -0.55 -0.28 -0.30 -0.25
123 -0.46 -0.36 -0.56 -0.54 -0.50 -0.48 -0.55 -0.56 -0.51 -0.51 -0.26 -0.19 -0.44 -0.24 -0.24 -0.16 -0.17 -0.25 -0.36 -0.28 -0.55 -0.27 -0.30 -0.25

115 -0.52 -0.32 -0.31 -0.25 -0.28 -0.48 -0.46 -0.54 -0.32 -0.64 -0.41 -0.12 -0.28 -0.18 -0.18 -0.18 -0.16 -0.25 -0.36 -0.30 -0.48 -0.25 -0.31 -0.22
161 -0.40 -0.31 -0.35 -0.29 -0.39 -0.43 -0.48 -0.54 -0.36 -0.55 -0.26 -0.12 -0.31 -0.21 -0.20 -0.16 -0.16 -0.24 -0.34 -0.30 -0.48 -0.23 -0.31 -0.22
122 -0.36 -0.28 -0.49 -0.50 -0.50 -0.48 -0.51 -0.51 -0.48 -0.43 -0.20 -0.18 -0.41 -0.23 -0.27 -0.15 -0.17 -0.24 -0.34 -0.27 -0.52 -0.25 -0.29 -0.24
41 -0.31 -0.24 -0.25 -0.21 -0.37 -0.39 -0.42 -0.45 -0.31 -0.52 -0.23 -0.12 -0.25 -0.20 -0.22 -0.15 -0.15 -0.24 -0.30 -0.27 -0.44 -0.23 -0.28 -0.20
107 -0.32 -0.28 -0.31 -0.24 -0.40 -0.40 -0.38 -0.45 -0.33 -0.26 -0.18 -0.12 -0.26 -0.21 -0.20 -0.12 -0.15 -0.23 -0.26 -0.24 -0.40 -0.21 -0.25 -0.19

198 -0.31 -0.29 -0.29 -0.29 -0.21 -0.17 -0.31 -0.36 -0.26 -0.68 -0.37 -0.05 -0.14 -0.08 0.00 -0.16 -0.11 -0.15 -0.26 -0.21 -0.25 -0.18 -0.22 -0.12
137 -0.28 -0.22 -0.40 -0.42 -0.48 -0.44 -0.45 -0.42 -0.42 -0.40 -0.17 -0.18 -0.35 -0.22 -0.29 -0.14 -0.16 -0.23 -0.29 -0.24 -0.49 -0.24 -0.25 -0.22
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Table 23: Difference in code coverages (x100) between entire and cut sequences (entire - cut), worst 27 code groups - all genomes

A B C D E F G H I J K L M N O P Q R S T U V W X

192 0.24 0.16 0.16 0.08 0.04 0.31 0.25 0.18 0.37 0.47 0.37 0.01 0.08 0.12 0.08 0.09 0.05 0.15 0.22 0.16 0.25 0.14 0.17 0.16
87 0.23 0.20 0.19 0.10 0.05 0.27 0.29 0.25 0.38 0.46 0.37 0.02 0.09 0.11 0.11 0.09 0.05 0.17 0.22 0.15 0.28 0.16 0.17 0.16
53 0.22 0.14 0.17 0.11 -0.02 0.26 0.19 0.15 0.26 0.49 0.35 0.03 0.09 0.09 0.07 0.07 0.02 0.14 0.24 0.17 0.21 0.12 0.17 0.17
56 0.27 0.15 0.18 0.11 0.10 0.30 0.23 0.24 0.24 0.25 0.19 0.03 0.13 0.12 0.09 0.05 0.01 0.08 0.17 0.15 0.19 0.12 0.15 0.16
89 0.26 0.19 0.21 0.13 0.11 0.27 0.27 0.31 0.24 0.24 0.19 0.04 0.15 0.11 0.11 0.05 0.02 0.09 0.17 0.14 0.23 0.14 0.15 0.16

191 0.28 0.19 0.23 0.20 0.03 0.27 0.28 0.26 0.38 0.48 0.38 0.06 0.11 0.11 0.09 0.09 0.07 0.14 0.20 0.15 0.28 0.13 0.16 0.15
86 0.27 0.23 0.26 0.22 0.04 0.23 0.33 0.32 0.39 0.47 0.38 0.07 0.12 0.10 0.11 0.09 0.07 0.16 0.20 0.13 0.31 0.15 0.16 0.16
88 0.13 0.11 0.13 0.04 0.03 0.18 0.21 0.16 0.29 0.15 0.22 0.03 0.06 0.09 0.11 0.06 0.04 0.13 0.22 0.15 0.21 0.13 0.17 0.16
135 0.31 0.18 0.25 0.22 0.09 0.26 0.26 0.32 0.25 0.27 0.20 0.08 0.16 0.11 0.09 0.05 0.03 0.07 0.15 0.13 0.22 0.11 0.14 0.15
145 0.31 0.22 0.28 0.24 0.10 0.23 0.31 0.39 0.26 0.26 0.20 0.09 0.17 0.10 0.11 0.05 0.03 0.09 0.15 0.12 0.26 0.13 0.14 0.15

99 0.13 0.17 0.08 0.00 0.00 0.21 0.23 0.22 0.27 0.39 0.32 -0.01 0.07 0.07 0.08 0.07 0.03 0.14 0.14 0.09 0.21 0.12 0.11 0.10
195 0.42 0.19 0.25 0.16 0.13 0.37 0.27 0.24 0.37 0.48 0.41 0.06 0.15 0.17 0.12 0.15 0.11 0.21 0.33 0.26 0.29 0.20 0.26 0.22
91 0.41 0.23 0.28 0.18 0.15 0.34 0.32 0.30 0.38 0.47 0.40 0.07 0.16 0.15 0.14 0.15 0.11 0.23 0.33 0.24 0.32 0.22 0.26 0.22
57 0.45 0.19 0.27 0.18 0.19 0.37 0.25 0.30 0.24 0.27 0.23 0.08 0.20 0.17 0.12 0.10 0.07 0.14 0.27 0.24 0.23 0.18 0.24 0.21
54 0.40 0.17 0.26 0.18 0.07 0.32 0.21 0.21 0.27 0.50 0.39 0.09 0.16 0.14 0.11 0.13 0.08 0.20 0.34 0.26 0.25 0.19 0.25 0.22

208 0.44 0.23 0.30 0.20 0.20 0.33 0.30 0.36 0.25 0.26 0.22 0.09 0.21 0.16 0.14 0.11 0.08 0.16 0.28 0.23 0.27 0.20 0.24 0.21
90 0.46 0.26 0.34 0.29 0.13 0.29 0.35 0.38 0.40 0.48 0.41 0.12 0.19 0.14 0.14 0.15 0.13 0.23 0.30 0.23 0.35 0.21 0.24 0.21
194 0.46 0.22 0.31 0.27 0.12 0.33 0.30 0.31 0.39 0.50 0.42 0.11 0.18 0.16 0.12 0.15 0.13 0.21 0.30 0.24 0.32 0.20 0.24 0.21
66 0.32 0.16 0.14 0.05 0.08 0.31 0.20 0.21 0.27 0.42 0.36 0.04 0.12 0.14 0.09 0.13 0.09 0.19 0.25 0.19 0.22 0.16 0.19 0.15
147 0.31 0.20 0.17 0.07 0.09 0.27 0.25 0.28 0.28 0.41 0.35 0.05 0.14 0.12 0.11 0.13 0.09 0.21 0.25 0.18 0.25 0.18 0.19 0.16

136 0.49 0.22 0.33 0.29 0.18 0.33 0.28 0.37 0.26 0.28 0.24 0.13 0.23 0.16 0.12 0.11 0.09 0.13 0.25 0.22 0.26 0.18 0.22 0.20
207 0.49 0.26 0.36 0.31 0.19 0.29 0.33 0.44 0.27 0.27 0.23 0.14 0.24 0.15 0.15 0.11 0.09 0.15 0.25 0.21 0.30 0.19 0.22 0.20
149 0.35 0.20 0.19 0.10 0.15 0.26 0.23 0.34 0.15 0.19 0.17 0.06 0.19 0.12 0.12 0.09 0.06 0.13 0.20 0.16 0.20 0.16 0.17 0.15
93 0.34 0.23 0.41 0.37 0.24 0.19 0.29 0.41 0.20 0.20 0.06 0.16 0.28 0.16 0.15 0.07 0.07 0.14 0.24 0.21 0.26 0.16 0.22 0.21
146 0.68 0.33 0.52 0.43 0.43 0.44 0.46 0.57 0.41 0.29 0.28 0.22 0.43 0.26 0.22 0.18 0.19 0.25 0.37 0.32 0.48 0.28 0.33 0.29

210 -0.10 0.00 0.12 0.05 0.08 0.08 0.13 0.08 0.18 0.00 -0.02 0.04 0.06 0.09 0.14 0.01 0.01 0.11 0.19 0.15 0.15 0.08 0.15 0.16
154 0.20 0.16 0.23 0.15 0.20 0.17 0.19 0.31 0.08 0.12 0.00 0.08 0.23 0.14 0.12 0.05 0.04 0.12 0.19 0.16 0.16 0.13 0.16 0.15
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Table 24: Difference in code coverages (x100) between entire and cut sequences (entire - cut), 27 remainder codes - ’model’ genomes

A B C D E F G H I J K L M N O P Q R S T U V W X

r_1 0.32 0.24 0.28 0.29 0.27 0.15 0.26 0.33 0.24 0.55 0.37 0.13 0.23 0.08 0.13 0.18 0.16 0.20 0.26 0.19 0.33 0.19 0.21 0.10
r_2 0.20 0.19 0.28 0.30 0.37 0.14 0.23 0.26 0.27 0.48 0.22 0.12 0.24 0.13 0.12 0.15 0.17 0.18 0.23 0.20 0.29 0.15 0.21 0.10
r_3 0.26 0.16 0.14 0.17 0.31 0.19 0.21 0.20 0.28 0.51 0.36 0.10 0.15 0.10 0.14 0.18 0.18 0.19 0.20 0.18 0.30 0.18 0.18 0.07
r_4 0.20 0.17 0.20 0.22 0.22 0.16 0.23 0.21 0.33 0.69 0.48 0.12 0.14 0.07 0.16 0.21 0.20 0.27 0.28 0.20 0.36 0.19 0.21 0.09
r_5 0.08 0.12 0.20 0.23 0.32 0.15 0.21 0.15 0.36 0.61 0.33 0.10 0.15 0.12 0.15 0.19 0.20 0.24 0.26 0.21 0.32 0.15 0.21 0.09

r_6 0.27 0.23 0.11 0.05 0.20 0.12 0.22 0.23 0.10 0.48 0.28 0.06 0.14 0.06 0.07 0.13 0.13 0.18 0.23 0.19 0.24 0.16 0.20 0.09
r_7 0.15 0.18 0.12 0.07 0.30 0.11 0.19 0.17 0.12 0.40 0.13 0.05 0.15 0.12 0.06 0.11 0.13 0.16 0.21 0.21 0.21 0.13 0.20 0.09
r_8 0.23 0.25 0.24 0.31 0.14 0.04 0.19 0.23 0.15 0.78 0.36 0.01 0.07 0.01 -0.13 0.16 0.11 0.10 0.12 0.09 0.13 0.08 0.11 -0.02
r_9 0.15 0.15 0.03 -0.02 0.14 0.13 0.19 0.12 0.19 0.61 0.40 0.04 0.05 0.05 0.09 0.17 0.16 0.25 0.25 0.20 0.28 0.16 0.20 0.09
r_10 0.02 0.11 0.03 0.00 0.24 0.12 0.17 0.06 0.22 0.54 0.25 0.03 0.06 0.11 0.08 0.14 0.16 0.22 0.23 0.21 0.24 0.13 0.21 0.09

r_11 0.26 0.22 0.44 0.49 0.45 0.18 0.32 0.24 0.36 0.36 0.13 0.19 0.31 0.16 0.16 0.12 0.17 0.18 0.26 0.22 0.35 0.18 0.23 0.16
r_12 0.21 0.19 0.23 0.27 0.23 0.18 0.23 0.37 0.12 0.30 0.14 0.08 0.22 0.04 0.10 0.08 0.07 0.07 0.11 0.07 0.27 0.10 0.09 0.03
r_13 0.09 0.14 0.23 0.28 0.33 0.17 0.21 0.31 0.15 0.22 -0.01 0.07 0.24 0.09 0.09 0.06 0.07 0.05 0.09 0.08 0.23 0.06 0.09 0.03
r_14 0.08 0.11 0.15 0.20 0.17 0.18 0.21 0.26 0.21 0.43 0.26 0.06 0.13 0.03 0.12 0.12 0.10 0.13 0.14 0.07 0.30 0.10 0.09 0.02
r_15 0.15 0.11 0.09 0.15 0.26 0.22 0.19 0.24 0.16 0.25 0.14 0.05 0.15 0.06 0.11 0.09 0.09 0.06 0.06 0.05 0.24 0.09 0.06 0.00

r_16 -0.04 0.06 0.15 0.21 0.27 0.17 0.19 0.19 0.24 0.35 0.11 0.05 0.15 0.08 0.11 0.09 0.11 0.11 0.11 0.09 0.27 0.06 0.09 0.02
r_17 0.03 0.12 0.07 0.05 0.25 0.14 0.17 0.21 0.00 0.15 -0.09 -0.01 0.15 0.08 0.03 0.02 0.04 0.03 0.06 0.08 0.15 0.04 0.08 0.02
r_18 0.15 0.17 0.06 0.03 0.15 0.15 0.19 0.28 -0.03 0.23 0.06 0.01 0.14 0.02 0.04 0.04 0.03 0.05 0.09 0.07 0.19 0.07 0.08 0.02
r_19 0.26 0.21 0.38 0.46 0.31 0.22 0.32 0.35 0.21 0.18 0.06 0.15 0.29 0.07 0.14 0.05 0.07 0.07 0.14 0.09 0.33 0.12 0.11 0.10
r_20 0.14 0.16 0.39 0.47 0.41 0.21 0.30 0.28 0.24 0.11 -0.09 0.14 0.31 0.12 0.13 0.03 0.08 0.05 0.12 0.10 0.30 0.09 0.11 0.09

r_21 0.03 0.10 -0.02 -0.04 0.10 0.15 0.17 0.17 0.07 0.36 0.17 -0.01 0.05 0.01 0.06 0.07 0.07 0.11 0.11 0.08 0.22 0.07 0.09 0.02
r_22 -0.09 0.05 -0.02 -0.02 0.20 0.14 0.15 0.10 0.09 0.28 0.02 -0.02 0.06 0.07 0.05 0.05 0.07 0.09 0.09 0.09 0.18 0.04 0.09 0.02
r_23 0.02 0.09 0.31 0.40 0.35 0.22 0.28 0.17 0.33 0.24 0.02 0.12 0.21 0.11 0.15 0.06 0.11 0.11 0.14 0.10 0.33 0.09 0.12 0.09
r_24 -0.03 0.02 -0.16 -0.16 0.13 0.20 0.13 0.04 0.11 0.31 0.17 -0.04 -0.03 0.04 0.07 0.08 0.08 0.10 0.06 0.06 0.18 0.07 0.06 -0.01
r_25 -0.35 -0.05 -0.21 -0.19 -0.03 -0.04 -0.08 -0.11 -0.08 -0.03 -0.10 -0.10 -0.16 -0.06 -0.01 -0.06 -0.04 -0.02 -0.11 -0.07 -0.08 -0.07 -0.08 -0.10

r_26 0.41 0.29 0.17 0.24 0.13 0.08 0.18 0.28 0.07 0.68 0.39 0.01 0.07 -0.01 -0.14 0.15 0.09 0.05 0.07 0.06 0.10 0.11 0.08 -0.04
r_27 0.08 0.06 0.16 0.27 0.28 0.27 0.25 0.11 0.34 0.27 0.17 0.10 0.12 0.08 0.17 0.09 0.12 0.12 0.11 0.08 0.33 0.11 0.09 0.07
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6.2 Appendix B: additional figures

As with the tables, for reasons of space the figure captions are not as informative as those in the

previous chapters. For a better understanding, please refer to the part of the Results where the

graphs of interest are commented.
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Figure 32: Code coverage distributions considering every sequence - all pairs of code groups, ’model’ genomes
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Figure 33: Code coverage considering every sequence: weighted percentage difference distributions - all pairs of code groups, ’model’ genomes (1)
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Figure 34: Code coverage considering every sequence: weighted percentage difference distributions - all pairs of code groups, ’model’ genomes (2)
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Figure 35: Code coverage considering every sequence: all the code groups - Drosophila.melanogaster
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Figure 36: Code coverage considering every sequence: all the code groups - Homo.Sapiens
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Figure 37: Code coverage by position results for all the 27 code pairs, first 50 codons only - AeropyrumPernix

C
ircular

C
odes,R

eading
Fram

es
A

nd
Error

C
orrection

In
Translation

81



6.2
A

ppendix
B:additionalfigures

6
A

PPEN
D

IX

Figure 38: Code coverage by position results for all the 27 code pairs, first 50 codons only - Helicobacter.pylori
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Figure 39: Code coverage by position results for all the 27 code pairs, first 50 codons only - Escherichia.coli
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Figure 40: Code coverage by position results for all the 27 code pairs, first 50 codons only - Plasmodiumfalciparum3D7
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Figure 41: Code coverage by position results for all the 27 code pairs, first 50 codons only - Drosophila.melanogaster
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Figure 42: Sequence length effect - without and with log transformation, ’model’ genomes (1)
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Figure 43: Sequence length effect - without and with log transformation, ’model’ genomes (2)
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Figure 44: Code coverage by position - ’model’ genomes, all x range

6.3 Appendix C: code

In this part will be stored the useful code for the analysis conducted. For the sake of clarity,

the code parts will be organized as they were presented in the chapter Data and algorithms

description.

For space issues, only the lines of code strictly necessary for the calculations previously described

will be included in this section5.

6.3.1 Useful and recurrent objects

In the following, we assume that the Rdata files are stored in a folder called data. Useful and

recurrent object evaluated in the following code are:
5If you are interested in further analysis and are curious about other parts of the code (e.g. for minor calculations

or graphics) or need some data, I will be glad to provide you with the material if you contact me by email.
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lista.files <- list.files("data") # Rdata files list

lista.org <- unlist( # genomes name list

lapply(

lista.files,

FUN = function(x) {

unlist(strsplit(x, split = ".RData"))

}

)

)

norg <- length(lista.org)

isgood <- rep(FALSE, norg) # indicates if there is at least one cds in the genome

names(isgood) <- lista.org

And useful libraries for the analysis are:

library(seqinr)

library(gtools)

library(xtable)

library(mathDNA)

library(tastypie)

library(data.table)

library(ggplot2)

6.3.2 Cutting the sequences

This part will be recurrent in the analysis. Here we include the part that refers to only one genome,

while in the following this part will be included in a for loop that runs through the genomes.

vname <- lista.org[i]

cat(paste("Genome: ",vname,"\n",sep=""))

load(paste("data/",lista.files[i],sep=""))

xx0 <- get(vname)

rm(list=(vname))
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## cutting part - with cutseq2 (faster than cutseq)

cut1 <- 39 # removed from the beginning

cut2 <- 30 # removed from the end

for(p in 1:length(xx0)){

seq <- xx0[[p]]

np0 <- length(seq)

seq <- mathDNA::cutseq2(seq, head = cut1, tail = cut2)

np <- length(seq)

if((np0 - np) != (cut1 + cut2)){

stop("Error in cutseq()")

}

xx0[[p]] <- seq

}

cat(paste("Removed", cut1, "from the head and", cut2,

"from the tail, applied to", p, "sequences.\n"))

## end cutting part

6.3.3 Codon usage on entire genomes

lett <- c("A", "C", "G", "T")

tre <- (permutations(4, 3, v = lett, repeats = T))

tre.s <- apply(tre, MARGIN = 1, FUN = paste, collapse = "")

cu0 <- matrix(0, nrow = 64, ncol = norg)

rownames(cu0) <- tre.s

colnames(cu0) <- lista.org

nseqs_cu <- rep(NA, norg) # number of sequences considered for codon usage

names(nseqs_cu) <- lista.org

for (i in 1:norg) {

vname <- lista.org[i]

cat("--- Codon Usage \n")

cat(paste("Genome: ", vname, "\n", sep = ""))

load(paste("data/", lista.files[i], sep = ""))
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xx0 <- get(vname)

rm(list = (vname))

## cutting part

cut1 <- 39

cut2 <- 30

for (p in 1:length(xx0)) {

seq <- xx0[[p]]

np0 <- length(seq)

seq <- mathDNA::cutseq2(seq, head = cut1, tail = cut2)

np <- length(seq)

if ((np0 - np) != (cut1 + cut2)) {

stop("Error in cutseq()")

}

xx0[[p]] <- seq

}

cat(paste("Removed", cut1, "from the head and", cut2,

"from the tail, applied to", p, "sequences.\n"))

## end cutting part

nseqs_cu[i] <- p # processed sequences for each genome

xx0 <- unlist(xx0)

n <- length(xx0)

ncod[i] <- n

xe0 <- matrix(as.vector(xx0), ncol = 3, byrow = TRUE)

cu0[, i] <- as.vector(prop.table(table(xe0[, 3], xe0[, 2], xe0[, 1]))) # codon usage

}

6.3.4 Code coverage considering entire genomes

RES0 <- matrix(NA, ncol = 216, nrow = norg)

rownames(RES0) <- lista.org

colnames(RES0) <- 1:216

for (i in 1:norg) {
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# coverage frame 0

RES0[i, ] <- t(apply(ccod,

MARGIN = 2,

FUN = mathDNA::cover,

codons = tre.s,

usage = cu0[, i]

) * 100)

}

6.3.5 Rolling means

For this analysis, we will use the table of the circular code groups (Table 1, object res) and the

matrix of all the codons in the 216 code groups (object ccod).

thr <- 1000

bw <- seq(3, 31, by = 2) # spans

nb <- length(bw)

load("data/eqc.RData")

eqc2 <- eqc

eqc <- eqc[, c(1, 6, 5, 3, 2, 8, 7, 4)]

colnames(eqc) <- tran

res <- eqc

ccod <- t(as.matrix(read.table("codici_circolari.txt", header = FALSE, sep = "", as.is = TRUE)))

rownames(ccod) <- 1:nrow(ccod)

colnames(ccod) <- 1:ncodes

ind1 <- res[1, 1] # 173, best code group

ind8 <- res[1, 8] # 192, worst code group

RE1 <- array(NA, dim = c(thr, nb, norg)) # results for the best code

dimnames(RE1) <- list(1:thr, bw, lista.org)

RE8 <- RE3 <- RE1

for (i in 1:norg) {

vname <- lista.org[i]
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set1 <- ccod[, ind1]

set8 <- ccod[, ind8]

set3 <- setdiff(tre.s, union(ccod[, res[1, 1]], ccod[, res[1, 8]]))

cat("--- Rolling windows \n")

cat(paste("Genome: ", vname, "\n", sep = ""))

load(paste("data/", lista.files[i], sep = ""))

xx0 <- get(vname)

rm(list = (vname))

lseq <- sapply(xx0, FUN = length)

xx0 <- xx0[lseq >= (thr * 3)] # remove sequences shorter than thr

## cutting part

cut1 <- 39

cut2 <- 30

for (p in 1:length(xx0)) {

seq <- xx0[[p]]

np0 <- length(seq)

seq <- mathDNA::cutseq2(seq, head = cut1, tail = cut2)

np <- length(seq)

if ((np0 - np) != (cut1 + cut2)) {

stop("Error in cutseq()")

}

xx0[[p]] <- seq

}

cat(paste(

"Removed", cut1, "from the head and", cut2,

"from the tail, applied to", p, "sequences.\n"

))

## end cutting part

nn <- length(xx0)

nseq[i] <- nn

if (nn > 0) {

isgood[i] <- TRUE
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lseq <- sapply(xx0, FUN = length) # sequence length

ncod[i] <- sum(unlist(lseq)) / 3 # codons in i-th genome

nomi <- 1:nn # names(xx0)

re1 <- array(NA, dim = c(thr, nb, nn)) # intermediate results

dimnames(re1) <- list(1:thr, bw, nomi)

re8 <- re3 <- re1

for (j in 1:nn) {

sname <- nomi[j]

x0 <- xx0[[j]]

x0 <- apply(matrix(as.vector(x0), ncol = 3, byrow = TRUE), FUN = paste, collapse = "", MARGIN = 1)

x0 <- x0[1:thr]

cov1 <- as.integer(x0 %in% set1)

cov8 <- as.integer(x0 %in% set8)

cov3 <- as.integer(x0 %in% set3)

re1[, , j] <- matrix(unlist(frollmean(cov1, n = bw, align = "center")), nrow = thr)

re8[, , j] <- matrix(unlist(frollmean(cov8, n = bw, align = "center")), nrow = thr)

re3[, , j] <- matrix(unlist(frollmean(cov3, n = bw, align = "center")), nrow = thr)

}

RE1[, , i] <- apply(re1, FUN = mean, MARGIN = c(1, 2), na.rm = TRUE)

RE8[, , i] <- apply(re8, FUN = mean, MARGIN = c(1, 2), na.rm = TRUE)

RE3[, , i] <- apply(re3, FUN = mean, MARGIN = c(1, 2), na.rm = TRUE)

}

}

6.3.6 Codon usage for every sequence

The first few lines of code are dedicated to a loop useful for extracting the maximum value of

the length of the sequences (parameter maxlenseq) and the total number of bases present in each

genome (vector totsize). Moreover, as described in previous chapters, only solution A will be

presented. In the vector problematicn will be stored the length (in bases) of the sequences that

generates unacceptable results.

lenseq <- NULL

totsize <- NULL

for (i in 1:norg) {
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vname <- lista.org[i]

cat("--- Max number of sequences and number of bases: \n")

cat(paste("Genome: ", vname, "\n", sep = ""))

load(paste("data/", lista.files[i], sep = ""))

genom <- get(vname)

rm(list = (vname))

lenseq[i] <- length(genom)

unlisted <- unlist(genom)

totsize[i] <- length(unlisted)

cat(lenseq[i], " ", totsize[i], "\n")

rm(genom)

rm(unlisted)

}

names(totsize) <- lista.org

maxlenseq <- max(lenseq)

cu_each <- array(NA, dim = c(norg, maxlenseq, length(tre.s)))

dimnames(cu_each) <- list(lista.org, 1:maxlenseq, tre.s)

problematicn <- numeric(0)

nseqs_cu <- rep(NA, norg)

names(nseqs_cu) <- lista.org

for (i in 1:norg) {

vname <- lista.org[i]

cat("--- Codon Usage For Each Sequence \n")

cat(paste("Genome: ", vname, "\n", sep = ""))

load(paste("data/", lista.files[i], sep = ""))

xx0 <- get(vname)

rm(list = (vname))

## cutting part

cut1 <- 39

cut2 <- 30

for (p in 1:length(xx0)) {

seq <- xx0[[p]]
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np0 <- length(seq)

seq <- mathDNA::cutseq2(seq, head = cut1, tail = cut2)

np <- length(seq)

if ((np0 - np) != (cut1 + cut2)) {

stop("Error in cutseq()")

}

xx0[[p]] <- seq

}

cat(paste(

"Removed", cut1, "from the head and", cut2,

"from the tail, applied to", p, "sequences.\n"

))

## end cutting part

nseqs_cu[i] <- p

listofseqs <- xx0

rm(xx0)

for (d in 1:length(listofseqs)) {

xx0 <- listofseqs[[d]]

n <- length(xx0)

xe0 <- matrix(as.vector(xx0), ncol = 3, byrow = TRUE)

a <- as.vector(prop.table(table(xe0[, 3], xe0[, 2], xe0[, 1])))

if (length(a) == 64) {

cu_each[lista.org[i], d, ] <- as.vector(prop.table(table(xe0[, 3], xe0[, 2], xe0[, 1])))

}

else {

cu_each[lista.org[i], d, ] <- rep(NA, 64)

problematicn <- c(problematicn, n)

}

}

}
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6.3.7 Code coverage considering every sequence

res_allseqs <- array(NA, dim = c(24, 151245, 27 * 2))

dimnames(res_allseqs) <- list(lista.org, 1:151245, c(res[, 1], res[, 8]))

for (i in 1:24) {

cat("--- CU for each sequence, all 27 best and 27 worst groups: \n")

cat(paste("Genome: ", lista.org[i], "\n", sep = ""))

for (pd in 1:151245) {

for (sg in dimnames(res_allseqs)[[3]]) {

res_allseqs[i, pd, sg] <- mathDNA::cover(

ccod[, as.numeric(sg)],

codons = tre.s,

usage = cu_each_bigg[i, pd, ]

)

}

}

}

6.3.8 Code coverage by position

The first few lines of code are dedicated to a loop useful for extracting the length of the longest

sequence among all the ones of the genomes of interest (parameter maxlencod). The sequences

shorter than 200 codons are excluded from this analysis. In this case we do not have the cutting

part, since we want to take into account the entire sequences.

maxlens <- NULL

for (i in 1:norg) {

vname <- lista.org[i]

cat("--- Longest sequence \n")

cat(paste("Genome: ", vname, "\n", sep = ""))

load(paste("data/", lista.files[i], sep = ""))

genom <- get(vname)

rm(list = (vname)) # rimuove il doppione

maxlens[i] <- max(sapply(genom, length))
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cat(maxlens[i], "\n")

}

maxlencod <- max(maxlens) / 3 # codons

cat(paste("\n --- The longest sequence is "), maxlencod, "codons long. \n")

cat(paste("And it is from", lista.org[which.max(maxlens)], "\n\n"))

# thr <- 200

RESpos1 <- matrix(NA, nrow = norg, ncol = maxlencod) # results for the best code

rownames(RESpos1) <- lista.org

colnames(RESpos1) <- 1:maxlencod

RESpos8 <- RESpos3 <- RESpos1

for (i in 1:norg) {

vname <- lista.org[i]

set1 <- ccod[, ind1]

set8 <- ccod[, ind8]

set3 <- setdiff(tre.s, union(ccod[, res[1, 1]], ccod[, res[1, 8]]))

cat("--- Means by positions \n")

cat(paste("Genome: ", vname, "\n", sep = ""))

load(paste("data/", lista.files[i], sep = ""))

xx0 <- get(vname)

rm(list = (vname))

lseq <- sapply(xx0, FUN = length)

xx0 <- xx0[lseq >= (thr * 3)] # remove sequences shorter than 200 codons

nn <- length(xx0)

nseq[i] <- nn # numero di cds

if (nn > 0) {

isgood[i] <- TRUE

lseq <- sapply(xx0, FUN = length)

ncod[i] <- sum(unlist(lseq)) / 3

nomi <- 1:nn
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re1 <- matrix(NA, nrow = nn, ncol = maxlencod) # different from previous re1

dimnames(re1) <- list(nomi, 1:maxlencod)

re8 <- re3 <- re1

for (j in 1:nn) {

sname <- nomi[j]

x0 <- xx0[[j]]

x0 <- apply(matrix(as.vector(x0), ncol = 3, byrow = TRUE), FUN = paste, collapse = "", MARGIN = 1)

cov1 <- as.integer(x0 %in% set1)

cov8 <- as.integer(x0 %in% set8)

cov3 <- as.integer(x0 %in% set3)

re1[j, 1:length(cov1)] <- cov1

re8[j, 1:length(cov8)] <- cov8

re3[j, 1:length(cov3)] <- cov3

}

RESpos1[i, ] <- colMeans(re1, na.rm = T)

RESpos8[i, ] <- colMeans(re8, na.rm = T)

RESpos3[i, ] <- colMeans(re3, na.rm = T)

}}

6.3.9 Bootstrap test

codtest <- function(cod, xf, B = 500, quant = c(0.05, 0.95), replace = FALSE, weight = FALSE) {

y <- setdiff(codn, cod) # 44 codons

ind <- which(codn %in% y) # indices of the new codons

ncod <- length(y)

yf <- xf[ind] / sum(xf[ind]) # codon usage for y re-normalized

y2 <- matrix(unlist(lapply(y, FUN = strsplit, split = "")), byrow = TRUE, ncol = 3)

GCy <- apply(y2, MARGIN = 1, FUN = function(x) {

sum(x %in% c("G", "C"))

}) # GC content for y

codu.b <- rep(0, B)

k <- 0
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if (weight) {

prob <- yf

} else {

prob <- NULL

}

while (k < B) {

cand <- sample.int(ncod, size = 21, replace = replace, prob = prob)

GCca <- GCy[cand]

S <- sum(GCca)

if (S >= 30 & S <= 33) {

j <- which(GCca == (S - 30))[1]

if (!is.na(j)) {

k <- k + 1

codu.b[k] <- sum(yf[cand[-j]])

}

}

}

return(quantile(codu.b, quant))

}

Circular Codes, Reading Frames And Error Correction In Translation 100



List of Tables

1 The 216 circular codes grouped in 27 equivalence classes according to the 8 transformations of the

dihedral symmetry group. The rows in bold refers to the 16 classes for which the codes corresponding

to the identity (I, first column) and to the Keto-Amino transformation (KM, last column) have no

common codons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Equivalence class formed by eight circular codes. Each column contains codons in 8 of the 216 circular

codons, related to each other by transformations of the dihedral group. . . . . . . . . . . . . . . . . . 10

3 Size of genomes considered in the study, model genomes in red. . . . . . . . . . . . . . . . . . . . . . 20

4 Preview of a small part of the results: codon usage of only 20 codons - AeropyrumPernix and

Homo.Sapiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Preview of a small part of the results: code coverage of sets in the first equivalence class only -

AeropyrumPernix and Homo.Sapiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Preview of a small part of the results: code coverage with the rolling mean approach with different

spans - AeropyrumPernix and Homo.Sapiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Preview of a small part of the results: codon usage for the first 5 sequences and 10 codons only -

AeropyrumPernix and Homo.Sapiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Preview of a small part of the results: code coverages of the first three pairs of best and worst codes

in the first 5 sequences only - AeropyrumPernix and Drosophila.melanogaster. . . . . . . . . . . . . . 32

9 Example of positional approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 Preview of a small part of the results: code coverages computed on the first and last positions -

AeropyrumPernix and Helicobacter.pylori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11 Differences in codon usage between entire and cut sequences for the codons in the best (173) and

worst (192) codes and for the start codon - model genomes. These differences have been calculated

using the formula below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Differences in code coverage between entire and cut sequences for the 27 best codes - model genomes.

These differences have been calculated using the formula below. . . . . . . . . . . . . . . . . . . . . . 39

13 Differences in code coverage between entire and cut sequences for the 27 worst codes - model genomes.

These differences have been calculated using the formula below. . . . . . . . . . . . . . . . . . . . . . 40

14 Differences in code coverage between entire and cut sequences for the 27 remainder sets - model

genomes. These differences have been calculated using the formula below. . . . . . . . . . . . . . . . 41

15 R-squared of quadratic regression: codes 173, 192 and remainder- all the genomes under analysis. . . 49

101



LIST OF TABLES LIST OF TABLES

16 Spearman’s rank correlation cofficients between code coverage on every sequence of the first three

pairs of best and worst codes and length of the sequence - model genomes. . . . . . . . . . . . . . . . 53

17 Number of sequences longer and shorter than 1000 codons - model genomes. . . . . . . . . . . . . . . 55

18 Comparison of code coverage results for best (173) and worst (192) codes considering the sequences

split according to their length - model genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

19 Different values in codon usage (x100) between entire and cut sequences - ’model’ genomes . . . . . 69

20 R-squared of quadratic regression - codes 23 and 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

21 R-squared of quadratic regression - codes 98 and 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

22 Difference in code coverages (x100) between entire and cut sequences (entire - cut), best 27 code

groups - all genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

23 Difference in code coverages (x100) between entire and cut sequences (entire - cut), worst 27 code

groups - all genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

24 Difference in code coverages (x100) between entire and cut sequences (entire - cut), 27 remainder

codes - ’model’ genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Circular Codes, Reading Frames And Error Correction In Translation 102



List of Figures

1 The translation process (from NIH, National Human Genome Research Institute). . . . . . . . . . . 2

2 Translation table of the genetic code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Comma free codes - example (reproduced from Giannerini et al., 2021). . . . . . . . . . . . . . . . . 5

4 Circular codes - example (reproduced from Giannerini et al., 2021). . . . . . . . . . . . . . . . . . . . 6

5 Circular permutation - example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Transformations of the nucleotides forming the dihedral group (reproduced from Giannerini et al.,

2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 Codon usage and code coverage - example (reproduced from Giannerini et al., 2021). . . . . . . . . . 11

8 Circular code coverage - universal properties (reproduced from Giannerini et al., 2021). . . . . . . . 12

9 Coverage of the best code (173, in blue) and of the worst code (192, in red) at the beginning and at

the end of the sequences in E.coli (reproduced from Giannerini et al., 2021). . . . . . . . . . . . . . . 13

10 mathDNA package logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Help pages for mathDNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 R help page for cutseq2 from mathDNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Code coverage distribution of best (173, in blue), worst (192, in red) and remainder (in green) codes

- model genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

14 R help page for cutseq2 from mathDNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

15 Coverages of the best code (173) calculated using the rolling means approach: cut (green box) vs

entire (blue box) sequences. The code coverage results computed considering the whole genome are

displayed with blue and red lines respectively when the entire and the cut sequences are taken into

account. - AeropyrumPernix, Helicobacter.pylori and Escherichia.coli. . . . . . . . . . . . . . . . . . 42

16 Coverages of the best code (173) calculated using the rolling means approach: cut (green box) vs

entire (blue box) sequences. The code coverage results computed considering the whole genome are

displayed with blue and red lines respectively when the entire and the cut sequences are taken into

account. - Plasmodiumfalciparum3D7, Drosophila.melanogaster and Homo.Sapiens. . . . . . . . . . . 43

17 Coverages of the worst code (192) calculated using the rolling means approach: cut (red box) vs

entire (yellow box) sequences. The code coverage results computed considering the whole genome

are displayed with blue and red lines respectively when the entire and the cut sequences are taken

into account. - AeropyrumPernix, Helicobacter.pylori and Escherichia.coli. . . . . . . . . . . . . . . . 43

103



LIST OF FIGURES LIST OF FIGURES

18 Coverages of the best code (192) calculated using the rolling means approach: cut (red box) vs

entire (yellow box) sequences. The code coverage results computed considering the whole genome

are displayed with blue and red lines respectively when the entire and the cut sequences are taken

into account. - Plasmodiumfalciparum3D7, Drosophila.melanogaster and Homo.Sapiens. . . . . . . . 44

19 Relationships between the coverage of the best (173), worst(192) and remainder codes for individual

sequences - AeropyrumPernix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

20 Relationships between the coverage of the best (173), worst(192) and remainder codes for individual

sequences - Helicobacter.pylori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

21 Relationships between the coverage of the best (173), worst(192) and remainder codes for individual

sequences - Escherichia.coli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

22 Relationships between the coverage of the best (173), worst(192) and remainder codes for individual

sequences - Plasmodiumfalciparum3D7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

23 Relationships between the coverage of the best (173), worst(192) and remainder codes for individual

sequences - Drosophila.melanogaster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

24 Relationships between the coverage of the best (173), worst(192) and remainder codes for individual

sequences - Homo.Sapiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

25 Distributions of coverages of best (173, in blue) and worst (192, in red) codes computed considering

every sequence - model genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

26 Relationship between coverage on every sequence of best (173) and worst (192) codes and length of

the sequence. In blue the LOESS regression curve. - Plasmodiumfalciparum3D7 . . . . . . . . . . . 53

27 Relationship between coverage on every sequence of best (173) and worst (192) codes and logarithm

of sequence length. In blue the simple linear regression curve. - Plasmodiumfalciparum3D7 . . . . . 54

28 Coverages of the best code (173) calculated using the rolling means approach: cut (light green box) vs

entire (dark green box) sequences. The benchmarks this time are the values for global code coverage

considering the group of sequences longer than 1000 codons (in red) and the group of sequences

shorter than 1000 codons (in blue) - AeropyrumPernix, Helicobacter.pylori and Escherichia.coli. . . . 56

29 Coverages of the best code (173) calculated using the rolling means approach: cut (light green box) vs

entire (dark green box) sequences. The benchmarks this time are the values for global code coverage

considering the group of sequences longer than 1000 codons (in red) and the group of sequences shorter

than 1000 codons (in blue) - Plasmodiumfalciparum3D7, Drosophila.melanogaster and Homo.Sapiens. 56

30 Coverages of the codes 173 (in green) and 192 (in red) by position, focus on the first 50 positions

only. The coverage values obtained by considering the whole genome for code 173 (blue line) and

192 (dark red line) are also shown - model genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Circular Codes, Reading Frames And Error Correction In Translation 104



LIST OF FIGURES LIST OF FIGURES

31 Bootstrap test results for the 16 disjoint pairs of best and worst codes and all the 24 genomes under

analysis, with 10000 bootstrap replications and 𝛼 = 0.0001. In every plot are displayed the bootstrap

rejection bands under the null hypothesis at 𝛼 = 0.0001 that the relation is produced by chance (in

green) and the results of the coverage of the worst (in red) and the remainder (in blue) codes. . . . . 62

32 Code coverage distributions considering every sequence - all pairs of code groups, ’model’ genomes . 76

33 Code coverage considering every sequence: weighted percentage difference distributions - all pairs of

code groups, ’model’ genomes (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

34 Code coverage considering every sequence: weighted percentage difference distributions - all pairs of

code groups, ’model’ genomes (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

35 Code coverage considering every sequence: all the code groups - Drosophila.melanogaster . . . . . . 79

36 Code coverage considering every sequence: all the code groups - Homo.Sapiens . . . . . . . . . . . . 80

37 Code coverage by position results for all the 27 code pairs, first 50 codons only - AeropyrumPernix . 81

38 Code coverage by position results for all the 27 code pairs, first 50 codons only - Helicobacter.pylori 82

39 Code coverage by position results for all the 27 code pairs, first 50 codons only - Escherichia.coli . . 83

40 Code coverage by position results for all the 27 code pairs, first 50 codons only - Plasmodiumfalci-

parum3D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

41 Code coverage by position results for all the 27 code pairs, first 50 codons only - Drosophila.melanogaster 85

42 Sequence length effect - without and with log transformation, ’model’ genomes (1) . . . . . . . . . . 86

43 Sequence length effect - without and with log transformation, ’model’ genomes (2) . . . . . . . . . . 87

44 Code coverage by position - ’model’ genomes, all x range . . . . . . . . . . . . . . . . . . . . . . . . . 88

Circular Codes, Reading Frames And Error Correction In Translation 105


	Introduction
	Biochemical background
	The translation process
	The genetic code

	Circular codes, symmetries and transformations
	Comma free codes and circular codes
	Codon usage and code coverage

	Motivation of the study
	Bootstrap test
	Overview of further results of interest


	Data and algorithms description
	Data: 24 different organisms
	 R package
	Removal of beginning and ending parts of the sequences
	Codon usage on whole genomes
	Code coverage
	Considering whole genomes
	Rolling means
	Considering every sequence
	By position

	Bootstrap test

	Results
	Differences in codon usage between entire and cut sequences
	Differences in code coverage between entire and cut sequences
	A critical investigation on the rolling means approach
	Relationships between best and worst codes coverage on individual sequences
	Sequence length effect
	Transient effect in the first positions of the sequences
	Evidence of a non-random relationship between the coverage of best and worst codes

	Conclusion
	Bibliography
	Appendix
	Appendix A: additional tables
	Appendix B: additional figures
	Appendix C: code
	Useful and recurrent objects
	Cutting the sequences
	Codon usage on entire genomes
	Code coverage considering entire genomes
	Rolling means
	Codon usage for every sequence
	Code coverage considering every sequence
	Code coverage by position
	Bootstrap test


	List of Tables
	List of Figures

